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Abstract

We introduce a new silhouette-based representation
for modeling clothed human bodies using deep generative
models. Our method can reconstruct a complete and
textured 3D model of a person wearing clothes from a single
input picture. Inspired by the visual hull algorithm, our
implicit representation uses 2D silhouettes and 3D joints
of a body pose to describe the immense shape complexity
and variations of clothed people. Given a segmented 2D
silhouette of a person and its inferred 3D joints from the
input picture, we first synthesize consistent silhouettes from
novel view points around the subject. The synthesized
silhouettes which are the most consistent with the input
segmentation are fed into a deep visual hull algorithm
for robust 3D shape prediction. We then infer the texture
of the subject’s back view using the frontal image and
segmentation mask as input to a conditional generative
adversarial network. Our experiments demonstrate that
our silhouette-based model is an effective representation
and the appearance of the back view can be predicted
reliably using an image-to-image translation network. While
classic methods based on parametric models often fail for
single-view images of subjects with challenging clothing,
our approach can still produce successful results, which are
comparable to those obtained from multi-view input.

1. Introduction
The ability to digitize and predict a complete and fully

textured 3D model of a clothed subject from a single view
can open the door to endless applications, ranging from
virtual and augmented reality, gaming, virtual try-on, to
3D printing. A system that could generate a full-body
3D avatar of a person by simply taking a picture as input
would significantly impact the scalability of producing
virtual humans for immersive content creation, as well as its
attainability by the general population. Such single-view
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Figure 1: Given a single image of a person from the frontal
view, we can automatically reconstruct a complete and
textured 3D clothed body shape.

inference is extremely difficult due to the vast range of
possible shapes and appearances that clothed human bodies
can take in natural conditions. Furthermore, only a 2D
projection of the real world is available and the entire back
view of the subject is missing.

While 3D range sensing [26, 34] and photogramme-
try [39] are popular ways of obtaining complete 3D models,
they are restricted to a tedious scanning process or require
specialized equipment. The modeling of humans from a
single view, on the other hand, has been facilitated by the
availability of large 3D human model repositories [3, 28],
where a parametric model of human shapes is used to guide
the reconstruction process [6]. However, these parametric
models only represent naked bodies and do not describe the
clothing geometry nor the texture. Another option is to use a
pre-captured template of the subject in order to handle new
poses [54], but such an approach is limited to the recording
of one particular person.

In this work, we propose a deep learning based non-
parametric approach for generating the geometry and texture
of clothed 3D human bodies from a single frontal-view
image. Our method can predict fine-level geometric details
of clothes and generalizes well to new subjects different
from those being used during training (See Figure 1).

While directly estimating 3D volumetric geometry from a
single view is notoriously challenging and likely to require a
large amount of training data as well as extensive parameter
tuning, two cutting-edge deep learning techniques have
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shown that impressive results can be obtained using 2D
silhouettes from very sparse views [20, 44]. Inspired by
these approaches based on visual hull, we propose the first
algorithm to predict 2D silhouettes of the subject from
multiple views given an input segmentation, which implicitly
encodes 3D body shapes. We also show that a sparse 3D
pose estimated from the 2D input [6, 38] can help reduce
the dimensionality of the shape deformation and guide the
synthesis of consistent silhouettes from novel views.

We then reconstruct the final 3D geometry from multiple
silhouettes using a deep learning based visual hull technique
by incorporating a clothed human shape prior. Since
silhouettes from arbitrary views can be generated, we further
improve the reconstruction result by greedily choosing view
points that will lead to improved silhouette consistency. To
fully texture the reconstructed geometry, we propose to train
an image-to-image translation framework to infer the color
texture of the back view given the input image from the
frontal view.

We demonstrate the effectiveness of our method on a
variety of input data, including both synthetic and real ones.
We also evaluate major design decisions using ablation
studies and compare our approach with state of the art single-
view as well as multi-view reconstruction techniques.

In summary, our contributions include:

� The first non-parametric solution for reconstructing
fully textured and clothed 3D humans from a single-
view input image.

� An effective two-stage 3D shape reconstruction pipeline
that consists of predicting multi-view 2D silhouettes
from a single input segmentation and a novel deep
visual hull based mesh reconstruction technique with
view sampling optimization.

� An image-to-image translation framework to recon-
struct the texture of a full body from a single photo.

2. Related Work
Multi-view reconstruction. Due to the geometric com-
plexity introduced by garment deformation and self occlu-
sions, reconstructing clothed human bodies usually requires
images captured from multiple viewpoints. Early attempts
in this direction have extensively explored visual hull based
approaches [31, 45, 15, 13, 9, 14] due to its efficiency
and robustness to approximate the underlying 3D geometry.
However, a visual hull based representation cannot handle
concave regions nor generate good approximations of fine-
scale details especially when the number of input views
is limited. To address this issue, detailed geometry are
often captured using techniques based on multi-view stereo
constraints [41, 63, 50, 39, 46, 16, 53]. A number of
techniques [56, 36, 58] exploit motion cues as additional
priors for a more accurate digitization of body shapes.

Some more recent research have focused on monocular
input capture, with the goal of making human modeling
more accessible to end users [54, 2, 1]. With the recent
advancement of deep learning, an active research direction is
to encode shape prior in a deep neural network in order
to model the complexity of human body and garment
deformations. To this end, Huang et al. [20] and Gilbert et
al. [17] have presented techniques that can synthesize
clothed humans in a volumetric form from highly sparse
views. Although the number of input views are reduced, both
methods still require a carefully calibrated capture system.
In this work, we push the envelop by reducing the input to a
single unconstrained input photograph.

Single-view reconstruction. To reduce the immense solu-
tion space of human body shapes, several 3D body model
repositories, e.g. SCAPE [3] and SMPL [28], have been
introduced, which have made the single-view reconstruction
of human bodies more tractable. In particular, a 3D
parametric model is built from such database, which uses
pose and shape parameters of the 3D body to best match
an input image [5, 18, 6, 24]. As the mapping between
the body geometry and the parameters of the deformable
model is highly non-linear, alternative approaches based
on deep learning have become increasingly popular. The
seminal work of Dibra et al. [10, 11] introduces deep neural
networks to estimate the shape parameters from a single
input silhouette. More recent works predict body parameters
of the popular SMPL model [6] by either minimizing
the silhouette matching error [42], joint error based on
the silhouette and 2D joints [43], or an adversarial loss
that can distinguish unrealistic reconstruction output [23].
Concurrent to our work, Weng et al. [52] present a method
to animate a person in 3D from a single image based on the
SMPL model and 2D warping.

Although deformable models offer a low-dimensional em-
bedding of complex non-rigid human body shapes, they are
not suitable for modeling of fine-scale clothing details. To
address this issue, additional information such as 2D [51, 8]
and 3D body pose [32, 57, 19] has been incorporated to help
recover clothed body geometry without relying on a template
mesh. BodyNet [44] for instance, estimates volumetric
body shapes from a single image based on an intermediate
inference of 2D pose, 2D part segmentation, as well as 3D
pose. The latest advances in novel view synthesis of human
pose [29, 4] and 3D shape [62, 61, 37] have demonstrated the
ability of obtaining multi-view inference from a single image.
In this work, we introduce an approach that combines 3D
poses estimation with the inference of silhouettes from novel
views for predicting high-fidelity clothed 3D human shapes
from a single photograph. We show that our method can
achieve reasonably accurate reconstructions automatically
without any template model.
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Figure 2: Overview of our framework.

3. Method

Our goal is to reconstruct a wide range of 3D clothed
human body shapes with a complete texture from a single
image of a person in frontal view. Figure 2 illustrates an
overview of our system. Given an input image, we �rst
extract the 2D silhouette and 3D joint locations, which are
fed into a silhouette synthesis network to generate plausible
2D silhouettes from novel viewpoints (Sec. 3.1). The
network produces multiple silhouettes with known camera
projections, which are used as input for 3D reconstruction
via visual hull algorithms [45]. However, due to possible
inconsistency between the synthesized silhouettes, the
subtraction operation of visual hull tends to excessively
erode the reconstructed mesh. To further improve the output
quality, we adopt a deep visual hull algorithm similar to
Huanget al. [20] with a greedy view sampling strategy so
that the reconstruction results account for domain-speci�c
clothed human body priors (Sec. 3.2). Finally, we inpaint
the non-visible body texture on the reconstructed mesh by
inferring the back view of the input image using an image-
to-image translation network (Sec. 3.3).

3.1. Multi­View Silhouette Synthesis

We seek an effective human shape representation that can
handle the shape complexity due to different clothing types
and deformations. Inspired by visual hull algorithms [31]
and recent advances in conditional image generation [12,
30, 60, 59, 25], we propose to train a generative network
for synthesizing 2D silhouettes from viewpoints other than
the input image (see Figure 3). We use these silhouettes
as an intermediate implicit representation for the 3D shape
inference.

Speci�cally, given the subject's 3D pose, estimated from
the input image as a set of 3D joint locations, we project the
3D pose onto the input image and a target image plane to get

Figure 3: Illustration of our silhouette synthesis network.

the 2D poseP s in the source view and the poseP t in the
target view, respectively. Our silhouette synthesis network
Gs takes the input silhouetteSs together withP s andP t as
input, and predicts the 2D silhouette in the target viewP t :

St = Gs
�
Ss; P s; P t

�
: (1)

Our loss function for training the networkGs consists
of reconstruction errors of the inferred silhouettes using
a binary cross entropy lossL BCE and a patch-based
adversarial lossL adv [22]. The total objective function is
given by

L = � BCE � L BCE + L adv ; (2)

where the relative weight� BCE is set to750. In particular,
the adversarial loss turns out to be critical for synthesizing
sharp and detailed silhouettes. Figure 4 shows that the loss
function with the adversarial term generate much sharper
silhouettes, while without an adversarial loss would lead to
blurry synthesis output.
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Figure 4: GAN helps generate clean silhouettes in presence
of ambiguity in silhouette synthesis from a single view.

Discussions. The advantages of using silhouettes to guide
the 3D reconstruction are two-fold. First, since silhouettes
are binary masks, the synthesis can be formulated as a
pixel-wise classi�cation problem, which can be trained
more robustly without the need of complex loss functions
or extensive hyper parameter tuning in contrast to novel
view image synthesis [29, 4]. Second, the network can
predict much a higher spatial resolution since it does not
store 3D voxel information explicitly, as with volumetric
representations [44], which are bounded by the limited
output resolution.

3.2. Deep Visual Hull Prediction

Although our silhouette synthesis algorithm generates
sharp prediction of novel-view silhouettes, the estimated
results may not be perfectly consistent as the conditioned
3D joints may fail to fully disambiguate the details in
the corresponding silhouettes (e.g., �ngers, wrinkles of
garments). Therefore, naively applying conventional visual
hull algorithms is prone to excessive erosion in the recon-
struction, since the visual hull is designed to subtract the
inconsistent silhouettes in each view. To address this issue,
we propose a deep visual hull network that reconstructs
a plausible 3D shape of clothed body without requiring
perfectly view-consistent silhouettes by leveraging the shape
prior of clothed human bodies.

In particular, we use a network structure based on [20].
At a high level, Huanget al. [20] propose to map 2D
images to a 3D volumetric �eld through a multi-view
convolutional neural network. The 3D �eld encodes the
probabilistic distribution of 3D points on the captured
surface. By querying the resulting �eld, one can instan-
tiate the geometry of clothed human body at an arbitrary
resolution. However, unlike their approach which takes
carefully calibrated color images from �xed views as input,
our network only consumes the probability maps of novel-
view silhouettes, which can be inconsistent across different
views. Although arbitrary number of novel-view silhouettes
can be generated, it remains challenging to properly select
optimal input views to maximize the network performance.
Therefore, we introduce several improvements to increase
the reconstruction accuracy.

Greedy view sampling. We propose a greedy view sam-
pling strategy to choose proper views that can lead to better
reconstruction quality. Our key idea is to generate a pool of
candidate silhouettes and then select the views that are most
consistent in a greedy manner. In particular, the candidate
silhouettes are rendered from12 view binsfB i g: the main
orientations of the bins are obtained by uniformly sampling
12 angles in the yaw axis. The �rst bin only contains the
input view and thus has to be aligned with the orientation
of the input viewpoint. Each of the other bins consists of5
candidate viewpoints, which are distributed along the pitch
axis with angles sampled fromf 0� ; 15� ; 30� ; 45� ; 60� g. In
the end, we obtain55 candidate viewpointsfV i g to cover
most parts of the 3D body.

To select the views with maximal consistency, we �rst
compute an initial bounding volume of the target model
based on the input 3D joints. We then carve the bounding
volume using the silhouette of the input image and obtain
a coarse visual hullH 1. The bins with remaining views
are iterated in a clockwise order, i.e., only one candidate
view will be sampled from each bin at the end of the
sampling process. Starting from the second binB2, the
previously computed visual hullH 1 is projected to its
enclosed views. The candidate silhouette that has the
maximum 2D intersection over union (IoU) withH 1 's
projection will be selected as the next input silhouette for
our deep visual hull algorithm. After the best silhouette
V̂2 is sampled fromB2, H 1 is further carved bŷV2 and the
updated visual hullH 2 is passed to the next iteration. We
iterated until all the view bins have been sampled.

The selected input silhouettes generated by our greedy
view sampling algorithm are then fed into a deep visual
hull network. The choice of our network design is similar
to that of [20]. The main difference lies in the format of
inputs. Speci�cally, in addition to multi-view silhouettes,
our network also takes the 2D projection of the 3D pose
as additional channel concatenated with the corresponding
silhouette. This change helps to regularize the body part
generation by passing the semantic supervision to the
network and thus improves robustness. Moreover, we also
reduce some layers of the network of [20] to achieve a more
compact model and to prevent over�tting. The detailed
architecture is provided in our supplementary materials.

3.3. Front­to­Back Texture Synthesis

When capturing the subject from a single viewpoint, only
one side of the texture is visible and therefore predicting the
other side of the texture appearance is required to reconstruct
a fully textured 3D body shape. Our key observation is
that the frontal view and the back view of a person are
spatially aligned by sharing the same contour and many
visual features. This fact has inspired us to solve the
problem of back-view texture prediction using animage-
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Figure 5: Illustration of our front-to-back synthesis network.

to-imagetranslation framework based conditional generative
adversarial network. Speci�cally, we train a generatorGt to
predict the back-view texturêI b from the frontal-view input
imageI f and the corresponding silhouetteSf :

Î b = Gt (I f ; Sf ): (3)

We train the generatorGt in a supervised manner by
leveraging textured 3D human shape repositories to generate
a dataset that suf�ces for our training objective (Sec. 3.4).
Adopted from a high-resolution image-to-image translation
network [48], our loss function consists of a feature matching
lossL F M that minimizes the discrepancy of intermediate
layer activation of the discriminatorD , a perceptual loss
L V GG using a VGG19 model pre-trained for image classi-
�cation task [40], and an adversarial lossL adv conditioned
by the input frontal image (see Figure 5). The total objective
is de�ned as:

L = � F M � L F M + � V GG � L V GG + L adv ; (4)

where we set the relative weights as� F M = � V GG = 10:0
in our experiments.

The resulting back-view image is used to complete the
per-vertex color texture of the reconstructed 3D mesh. If
the dot product between the surface normaln in the input
camera space and the camera rayc is negative (i.e., surface
is facing towards the camera), the vertex color is sampled
from the input view image at the corresponding screen
coordinate. Likewise, if the dot product is positive (i.e.,
surface is facing in the opposite direction), the vertex color
is sampled from the synthesized back-view image. When the
surface is perpendicular to the camera ray (i.e.,jn � cj � � =
1:0 � 10� 4), we blend the colors from the front and back
views so that there are no visible seams across the boundary.

3.4. Implementation Details

Body mesh datasets. We have collected73rigged meshes
with full textures from aXYZ1 and 194 meshes from
Renderpeople2. We randomly split the dataset into a training

1https://secure.axyz-design.com/
2https://renderpeople.com/3d-people/

set and a test set of247 and20 meshes, respectively. We
apply 48 animation sequences (such as walking, waving,
and Samba dancing) from Mixamo3 to each mesh from
Renderpeople to collect body meshes of different poses.
Similarly, the meshes from aXYZ have been animated into
11different sequences. To render synthetic training data, we
have also obtained163second-order spherical harmonics of
indoor environment maps from HDRI Haven4 and they are
randomly rotated around the yaw axis.

Camera settings for synthetic data. We place the pro-
jective camera so that the pelvis joint is aligned with the
image center and relative body size in the screen space
remains unchanged. Since our silhouette synthesis network
takes an unconstrained silhouette as input and generate a
new silhouette in prede�ned view points, we separate the
data generation for the source silhouettes and the target
silhouettes. We render our data images at the resolution of
256� 256. For the source silhouettes a yaw angle is randomly
sampled from360� and a pitch angle between� 10� and60� ,
whereas for the target silhouettes, a yaw angle is sampled
from every7:5� and a pitch angle from10; 15; 30; 45; 60� .
The camera has a randomly sampled35mm �lm equivalent
focal length ranged between40 and135mm for the source
silhouettes and a �xed focal length of800mm for the target
silhouettes. For the front-to-back image synthesis, we set
the yaw angle to be frontal and sample the pitch angle from
0; 7:5; 15� with a focal length of800mm. Given the camera
projection, we project13 joint locations that are compatible
with MPII [33] onto each view point.

Front-to-back rendering. Figure 6 illustrates how we
generate a pair of front and back view images. Given
a camera ray, normal rendering of 3D mesh sorts the
depth of triangles per pixel and display the rasterization
results assigned from the closest triangle. To obtain the
corresponding image from the other side, we instead takes
that of the furthest triangle. Note that most common graphics
libraries (e.g., OpenGL, DirectX) support this function,
allowing us to generate training samples within a reasonable
amount of time.

Network architectures. Both our silhouette synthesis
network and the front-to-back synthesis network follow the
U-Net network architecture in [22, 55, 21, 49, 47] with an
input channel size of7 and4, respectively. All the weights in
these networks are initialized based on Gaussian distribution.
We use the Adam optimizer with learning rates of2:0� 10� 4,
1:0 � 10� 4, and2:0 � 10� 4, batch size of30, 1, and1, the
number of iterations of250; 000, 160; 000, and50; 000, and

3https://www.mixamo.com/
4https://hdrihaven.com/
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Figure 6: Illustration of our back-view rendering approach.

no weight decay for the silhouette synthesis, deep visual hull,
and front-to-back synthesis, respectively. The deep visual
hull is trained with the output of our silhouette synthesis
network so that the distribution gap between the output of
silhouette synthesis and the input for the deep visual hull
algorithm is minimized.

Additional networks. Although 2D silhouette segmenta-
tion and 3D pose estimation are not our major contributions
and in practice one can use any existing methods, we
train two additional networks to automatically process
the input image with consistent segmentation and joint
con�gurations. For the silhouette segmentation, we adopt a
stacked hourglass network [35] with three stacks. Given an
input image of resolution256� 256� 3, the network predicts
a probability map of resolution64� 64� 1 for silhouettes.
We further apply a deconvolution layer with a kernel size
of 4 to obtain sharper silhouettes, after concatenating2�
upsampled probability and the latent features after the �rst
convolution in the hourglass network. The network is
trained with the mean-squared error between the predicted
probability map and the ground truth of UP dataset [24].
For 3D pose estimation, we adopt a state-of-the-art 3D face
alignment network [7] without modi�cation. We train the
pose estimation network using our synthetically rendered
body images of resolution256 � 256 together with the
corresponding 3D joints. We use the RMSProp optimizer
with a learning rate of2:0 � 10� 5, a batch size of8 and no
weight decay for training both the silhouette segmentation
and pose estimation networks.

4. Experimental Results

Figure 7 shows our reconstruction results of 3D clothed
human bodies with full textures on different single-view
input images from the DeepFashion dataset [27]. For each
input, we show the back-view texture synthesis result, the
reconstructed 3D geometry rendered with plain shading, as
well as the �nal textured geometry. Our method can robustly
handle a variety of realistic test photos of different poses,

Figure 7: Our 3D reconstruction results of clothed human
body using test images from the DeepFashion dataset [27].

body shapes, and cloth styles, although we train the networks
using synthetically rendered images only.

4.1. Evaluations

Silhouette Representation. We verify the effectiveness
of our silhouette-based representation by comparing it with
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