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Fluid animation

Physics-based simu

© Physics and visua

ation

reality

Computationally expensive

Procedural turbulence

© Computational efficiency

Limited generality

[Fedkiw et al. 2001]

?

[Kim et al. 2008]



Our goal

General & flexible effects

may or may not be based on physics reality

User friendly & controllability

only needs to supply exemplar

Easy computation

fast

stable




Our approach

Example-based motion field texture synthesis
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small-scale detail exemplar
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large-scale coarse motion
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Input output


videos/2Dsmoke_heart_xvid.avi

Why?

Characteristics of many animation effects

A large-scale motion + repetitive small-scale detalls

Users’ preference

Direct only the large-scale motion

Avoid tedious manual work for motion details

Generality of data-driven methods

Example-based vs. procedural



Related work: animation

Control for large scale fluid motion
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[Fattal and Lischinski 2004] [McNamara et al. 2004]



Related work: animation

Synthesize detailed fluid motion

Kolmogorov’s 5/3 power law

Procedural noise u u
' [Schechter and Bridson 2008]

[Kim et al. 2008] [Narain et al. 2008]



Related work: texture synthesis

Original for color images ,-.'.'.--.‘.',n-..':o"v‘:g.‘
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Later extended for other data categories

Video, geometry, character motion, etc

See [Wel et al. 2009] for survey



Algorithm



Motion field

Velocity/displacement vectors defined over regular grids

2D motion field

(u(xy).v(xy))

3D motion field
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Data acquisition

For both exemplar and large-scale motion
Physics-based simulation
Procedural flow
Captured motion data

Manual doodling

To obtain interesting exemplars
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oy  oX



Exemplar derivation

From color image to motion exemplar

scale and blur grayscale
—— ——]

lcurl operator

organization texton mask m
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Algorithm pipeline

Initialization
Random Initialization for the first frame

Advection from last frame

Optimization-based synthesis of detail motion

Combination with original motion

User-specified constant weight

Final rendering
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Algorithm pipeline
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Combination with original motion

User-specified constant weight ® ud
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Synthesize motion details

Adapt texture optimization [Kwatra et al. 2005]

({ }) Z‘x—z‘+0

peX

~"
neighborhood similarity

Solver

_east squares [Kwatra et al. 2005]

Discrete solver [Han et al. 2006]



Motion vs. color

Coordinate transformation

For natural appearance of motion details

Vector projection
For 2D-to-3D synthesis



Coordinate transformation

diagonal large-scale motion
matched neighborhood

wrong value

exemplar (swirl pattern) output



Vector projection

Solid color textures

Remain invariant with respect to different views

(5 (%), 6 (0 ¥).b (6 Y)) = (5 (%0¥:2).8 (4 1,2). b, (1,2))
3D motion vectors

Subject to vector projection

(ui3(X, Y):Vis (X, y))\
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Vector projection

(W, u;,) A 2D input specifies only
_ e the corresponding
X projected components of
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Boundary conditions

Constrained texture synthesis
Normal component

Vector magnitude

Additional energy term:

sub-vector component

-
En (X) - Z ;Lp Xrlg) B b;’\ specified boundary

peX condition




Results



2D results

N lightning =y 205

L circle




3D result

™ exemplar

s

cross-dimension
synthesis

original our result


videos/3Dsmoke_square_combine_xvid.avi

3D result

L exemplar

s

cross-dimension
synthesis

original our result


videos/3Dsmoke_circle_combine_xvid.avi

Boundary conditions

Constrain normal components with respect to obstacles

original our result


videos/ComplexBoundary04_xvid.avi

Boundary conditions

Constrain magnitude within a triangular region

_curl ois [Brisn t aI.2007]




Boundary conditions

Constrain magnitude within a triangular region -

exemplar



videos/Bridson_0031-0249_xvid.avi

Group motion

Vertex displacement for triangle meshes

Sinusoidal exemplar for all the three views

original our result



Conclusion

Automatic synthesis of motion details from texture
exemplars

Enables non-physics-based artistic effects




Future work

Real-time application
Lazy evaluation [Dong et al. 2008]

Lagrangian particle system

Regular pixels/voxels vs. irregular mesh vertices

Other guantities
Agent positions [Kyriakou and Chrysanthou 2008]
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Thank you!



