Motion Field Texture Synthesis

Chongyang Ma^{1,3}

Li-Yi Wei²

Baining Guo^{3,1}

Kun Zhou⁴

¹Tsinghua University

²Microsoft Research

³Microsoft Research Asia

⁴Zhejiang University

Fluid animation

Physics-based simulation

- Physics and visual reality
- Computationally expensive

įi cakiw ci ai. 20

Procedural turbulence

- Computational efficiency
- Control in the second of th

[Kim et al. 2008]

Our goal

General & flexible effects

may or may not be based on physics reality

User friendly & controllability only needs to supply exemplar

Easy computation

fast

stable

Our approach

Example-based motion field texture synthesis

small-scale detail exemplar

large-scale coarse motion

Why?

Characteristics of many animation effects

A large-scale motion + repetitive small-scale details

Users' preference

Direct only the large-scale motion

Avoid tedious manual work for motion details

Generality of data-driven methods

Example-based vs. procedural

Related work: animation

Control for large scale fluid motion

[Fattal and Lischinski 2004]

[McNamara et al. 2004]

Related work: animation

Synthesize detailed fluid motion

Kolmogorov's 5/3 power law

Procedural noise

[Kim et al. 2008]

[Schechter and Bridson 2008]

[Narain et al. 2008]

Related work: texture synthesis

Later extended for other data categories

Video, geometry, character motion, etc

See [Wei et al. 2009] for survey

Algorithm

Motion field

Velocity/displacement vectors defined over regular grids

2D motion field

3D motion field

Data acquisition

For both exemplar and large-scale motion

Physics-based simulation

Procedural flow

Captured motion data

Manual doodling

To obtain interesting exemplars

Derive from images by curl operator $\nabla \times \Psi = \left(\frac{\partial \Psi}{\partial y}, -\frac{\partial \Psi}{\partial x}\right)$

Exemplar derivation

From color image to motion exemplar

Initialization

Random Initialization for the first frame

Advection from last frame

Optimization-based synthesis of detail motion

Combination with original motion

User-specified constant weight

Initialization

Random Initialization for the first frame

Advection from last frame

Optimization-based synthesis of detail motion

Combination with original motion

User-specified constant weight

Initialization

Random Initialization for the first frame

Advection from last frame

Optimization-based synthesis of detail motion

Combination with original motion

User-specified constant weight

Initialization

Random Initialization for the first frame

Advection from last frame

Optimization-based synthesis of detail motion

Combination with original motion

User-specified constant weight

Initialization

Random Initialization for the first frame

Advection from last frame

Optimization-based synthesis of detail motion

Combination with original motion

User-specified constant weight

Initialization

Random Initialization for the first frame

Advection from last frame

Optimization-based synthesis of detail motion

Combination with original motion

User-specified constant weight

Synthesize motion details

Adapt texture optimization [Kwatra et al. 2005]

$$E_{t}\left(\mathbf{x};\left\{\mathbf{z}_{p}\right\}\right) = \sum_{p \in X^{\dagger}}\left|\mathbf{x}_{p} - \mathbf{z}_{p}\right|^{2} + O\left(\mathbf{x}\right)$$
neighborhood similarity additional constraints

Solver

Least squares [Kwatra et al. 2005]

Discrete solver [Han et al. 2006]

Motion vs. color

Coordinate transformation

For natural appearance of motion details

Vector projection

For 2D-to-3D synthesis

Coordinate transformation

diagonal large-scale motion
matched neighborhood
wrong value at the red point
correct value at the red point

exemplar (swirl pattern)

output

Vector projection

Solid color textures

Remain invariant with respect to different views

$$(r_i(x,y),g_i(x,y),b_i(x,y))_{i=1,2,3} \rightarrow (r_o(x,y,z),g_o(x,y,z),b_o(x,y,z))$$

3D motion vectors

Subject to vector projection

$$\frac{\left(u_{i3}(x,y), v_{i3}(x,y)\right)}{\left(v_{i1}(y,z), w_{i1}(y,z)\right)} \rightarrow \left(u_{o}(x,y,z), v_{o}(x,y,z), w_{o}(x,y,z)\right)$$

$$\frac{\left(w_{i2}(z,x), u_{i2}(z,x)\right)}{\left(w_{i2}(z,x), u_{i2}(z,x)\right)}$$

Vector projection

A 2D input specifies only the corresponding projected components of a 3D output.

$$u_o = \frac{u_{i2} + u_{i3}}{2}$$

$$v_o = \frac{v_{i3} + v_{i1}}{2}$$

$$w_o = \frac{w_{i1} + w_{i2}}{2}$$

Constrained texture synthesis

Normal component

Vector magnitude

Additional energy term:

$$E_n\left(\mathbf{x}\right) = \sum_{p \in X} \lambda_p \left| \mathbf{x}_p^n - \mathbf{b}_p^{-2} \right|_{\substack{\text{specified boundary} \\ \text{condition}}}^2$$

a Gaussian weighting function

Results

2D results

3D result

original our result

3D result

original our result

Constrain normal components with respect to obstacles

original

our result

Constrain magnitude within a triangular region

original

curl noise [Bridson et al.2007]

Constrain magnitude within a triangular region

original

our result

Group motion

Vertex displacement for triangle meshes
Sinusoidal exemplar for all the three views

original

our result

Conclusion

Automatic synthesis of motion details from texture exemplars

Enables non-physics-based artistic effects

Future work

Real-time application

Lazy evaluation [Dong et al. 2008]

Lagrangian particle system

Regular pixels/voxels vs. irregular mesh vertices

Other quantities

Agent positions [Kyriakou and Chrysanthou 2008]

Acknowledgements

Xin Tong Su Wang

Xin Sun Kai Xu

Zhong Ren Matt Scott

Kangkang Yin Bridson et al. 2007

Qiming Hou Kim et al. 2008

Minmin Gong NVIDIA

Thank you!