Eurographics 2014 – Strasbourg – France

Game Level Layout from Design Specification

[Eurographics 2014]

Chongyang Ma Sylvain Lefebvre

Nicholas Vining Alla Sheffer

Game level layouts

Graph connectivity

Graph connectivity

Building blocks

Graph connectivity

Building blocks

- Additional constraints
 - Intersection-free
 - Pairwise contacts
 - Boundary obstacles

Graph connectivity

Building blocks

Additional constraints

Diverse outputs

Game level layout synthesis

Procedural geometry modeling

- 3D architectural shapes
 - [WWSR03, MWH*06, MM08, LCOZ*11]

- 2D building layouts
 - [PM01, CEW*08, VKW*12, YYW*12]

- Plausibility and aesthetics
- **★** Do NOT control contacts or adjacencies

Procedural geometry modeling

- Floor plans
 - [MS74, Sha87, Lig00, MSK10, LYAM13, BYMW13]

- VLSI circuits
 - [She98]

- Controlled envelope
- * Axis-aligned elements only

Technical challenges

- High-dimensional
 - Large number of blocks
- Mixed continuous-discrete search space
 - Continuous: block positions
 - Discrete: node-to-block associations

Naïve stochastic optimization

X Low convergence rates

Algorithm

- Incremental layout
 - Graph decomposition
 - Backtracking

- Chain layout
 - Iterative optimization

Algorithm

- Incremental layout
 - Graph decomposition
 - Backtracking

- Chain layout
 - Iterative optimization

- For a pair of building blocks
- Enough contact area but no intersection

- For a pair of building blocks
- Enough contact area but no intersection

Intersection of multiple config. spaces

Intersection of multiple config. spaces

Algorithm

- Incremental layout
 - Graph decomposition
 - Backtracking

- Chain layout
 - Iterative optimization

Algorithm

- Incremental layout
 - Graph decomposition
 - Backtracking

- Chain layout
 - Iterative optimization

```
Input: Planar graph \mathcal{G}, building blocks \mathcal{B}, layout stack \mathcal{S}
 1: procedure Incremental Layout (\mathcal{G}, \mathcal{B}, \mathcal{S})
         Push empty layout into S
 2:
 3:
         repeat
 4:
              s \leftarrow \mathcal{S}.pop()
 5:
              Get the next chain c to add to s
 6:
              AddChain(\mathbf{c}, s) //extend the layout to contain \mathbf{c}
              if extended partial layouts were generated then
 7:
 8:
                  Push new partial layouts into S
 9:
              end if
          until target # of full layouts is generated or S is empty
10:
11: end procedure
```

Graph decomposition

Graph decomposition

Graph decomposition

Backtracking

Backtracking

Backtracking

Algorithm

- Incremental layout
 - Graph decomposition
 - Backtracking

- Chain layout
 - Iterative optimization

Chain layout

- Energy formulation
 - -A: total area of intersection
 - D: sum of squared distances of pairs should be but not in contact

$$E = e^{A/\sigma} \cdot e^{D/\sigma} - 1$$

- Iterative optimization
 - Simulated annealing

Chain layout

Pseudocode 2 Extend partial layout s adding the chain c

```
1: procedure ADDCHAIN(\mathcal{G}, \mathcal{B}, \mathcal{S}, \mathbf{c}, s)
 2:
                                                            // Initial temperature
          t \leftarrow t_0
          for i \leftarrow 1, n do
                                                         // n: # of cycles in total
 4:
               for j \leftarrow 1, m do
                                                       // m: # of trials per cycle
 5:
                    s' \leftarrow \text{Locally perturb } s \cup \mathbf{c}
                    if s' is valid then
 6:
 7:
                        if s \cup c is full layout then output it
 8:
                        else if s' passes variability test
                             Push s' into S
 9:
10:
                             Return if enough extended layouts computed
11:
                         end if
12:
                    end if
                                                           //\Delta \mathbf{E} = \mathbf{E}(s') - \mathbf{E}(s)
13:
                    if \Delta E < 0 then
                         s \leftarrow s'
14:
                    else if rand() < e^{-\Delta E/(k*t)} then
15:
                         s \leftarrow s'
16:
17:
                    else
                         Discard s'
18:
                    end if
19:
20:
               end for
                                                      // Cool down temperature
21:
               t \leftarrow t \times ratio
22:
          end for
23: end procedure
```

Chain layout

Iterative optimization

Results: different building blocks

Results: different building blocks

Results: large input graph

Results: high-valence tree

Results: multi-floor constraints

Results: boundary constraints

Results: restricted door positions

Statistics

	success rate first/10th	# of sol.	first solution	10th solution	
			time avg/med	time avg/med	iter. # avg/med
Fig 1	1/0.94	9.8	4.9/2.3	10.9/6.8	51k/33k
Fig 7, top	1/1	10	1.1/0.4	1.8/1.2	7k/4k
Fig 7, bot	0.94/0.84	9.3	23/18	48/40	229k/187k
Fig 8	0.98/0.98	10	80/55	94/73	385k/295k
Fig 9	1/1	10	1.7/0.3	2/0.6	22k/6k

Conclusion

A novel level layout synthesis method for various design goals

 A graph-decomposition based layout strategy for complex connectivity

 A stochastic optimization algorithm based on configuration space for fast convergence

Future work

- Additional design goals
 - Production scenarios

- Speedup
 - More advanced stochastic search

- Increase output variability
 - Allow block deformation

Acknowledgements

Anonymous reviewers

• NSERC, GRAND NCE and ERC ShapeForge (StG-2012- 307877).

Thank you!