Eurographics 2014 — Strasbourg — France

Game Level Layout from Design
Specification

[Eurographics 2014]

Chongyang Ma Nicholas Vining
Sylvain Lefebvre Alla Sheffer

ouUT
CE D
) <YWz "
N = :1
55}
o) o
\ L
~ R »ﬂ/ N
' ?.."

INVENTORS FOR THE DIGITALWORLD

Game level layouts

Design specification

* Graph connectivity

Design specification

Hi===i
* Building blocks %%
W =

Design specification

* Graph
* Building

* Additional constraints
— Intersection-free
— Pairwise contacts
— Boundary obstacles

Design specification

Graph

Building

Additional constraints

Diverse outputs

Game level layout synthesis

15 I

5 |l
1n
w
n
o
an
N
o
) N
N

Procedural geometry modeling

* 3D architectural shapes

e 2D building layouts
— [PMO1, CEW*08, VKW*12, YYW*12]

Plausibility and aesthetics
® Do NOT control contacts or adjacencies

Procedural geometry modeling

* Floor plans
— [MS74, Sha87, Lig00, MSK10, LYAM13, BYMW13]

Bath Closet Utility

) V LS I C i rC u it S BedRoom | Hall Kitchen

Dining

— [She98] NN crer

Bath Foyer Entry

v Controlled envelope
® Axis-aligned elements only

Technical challenges

* High-dimensional
— Large number of blocks

* Mixed continuous-discrete search space
— Continuous: block positions
— Discrete: node-to-block associations

Naive stochastic optimization
® Low convergence rates

Algorithm

* Configuration space

* Incremental layout
— Graph decomposition
— Backtracking

* Chain layout

— lterative optimization

Algorithm

* Configuration space

Configuration space

* For a pair of building blocks
* Enough contact area but no intersection

l————l

Configuration space

* For a pair of building blocks
* Enough contact area but no intersection

e
1 | | -
I_I | I

I I

| .

I

I
|
I
I
L
B
1
I
]
|—

———1
|
|
| H
|
e)

|

Configuration space

* |ntersection of multiple config. spaces

r
|
|
L

Configuration space

* |ntersection of multiple config. spaces

r

l— —_—_ 21

Algorithm

* Configuration space

TR |__'I

 am

i f

Algorithm

* Incremental layout
— Graph decomposition
— Backtracking

Incremental layout

Input: Planar graph G, building blocks B, layout stack S
1: procedure INCREMENTALLAYOUT(G, B, S)
2: Push empty layout into S
repeat
s <— S.pop()
Get the next chain ¢ to add to s
AddChain(e, s) //extend the layout to contain ¢
if extended partial layouts were generated then
Push new partial layouts into S
9: end if
10: until target # of full layouts is generated or S is empty
11: end procedure

XN ER

Incremental layout

* Graph decomposition

(@) Input graph

Incremental layout

* Graph decomposition

@
0 1 2
3
0
3 3
4 5 0 4
i

4
I

(@) Input graph (b) Partial solution 1 (c) Partial solution 2

Incremental layout

* Graph decomposition

1

0

4

—

(@) Input graph (b) Partial solution 1 (c) Partial solution 2

(e) Full solution 2

6

2

(d) Full solution 1

(f) Full solution 3

A

(g) Full solution 4

Incremental layout

* Backtracking

input graph

10 =

11

12

bad partial layout

Incremental layout

* Backtracking

input graph

11

12

good partial layout
after backtracking

Incremental layout

* Backtracking

- T 1
L 9
14

8 10

11

input graph final solution

Algorithm

* Chain layout

— lterative optimization

Chain layout

* Energy formulation
— A : total area of intersection

— D :sum of squared distances of pairs should be
but not in contact

E=e"7-eP7 1

* |terative optimization

— Simulated annealing

Chain layout

Pseudocode 2 Extend partial layout s adding the chain ¢

1: procedure ADDCHAIN(G, B, S, ¢, s)

2: t<+ 1o // Initial temperature
3 fori< 1,ndo /I n: # of cycles in total
4 for j <+ 1,mdo /I m: # of trials per cycle
5: s’ < Locally perturb s U ¢
6: if s’ is valid then
7: if s U c is full layout then output it
8: else if s’ passes variability test
9: Push s’ into S
10: Return if enough extended layouts computed
11: end if
12: end if
13: if AE < 0 then I/l AE = E(s") —E(s)
14: s+ s
15: else if rand() < e~2E/(k*!) then
16: s+ s
17: else
18: Discard s’
19: end if
20: end for
21: t <t Xratio // Cool down temperature
22: end for

23: end procedure

Chain layout

* lterative optimization

[- L4
0 1 2
Q7 3@
6 S5 4
@ - L

(a) Input graph

6

(b) Initialization

7

(e) Intermediate result 3

1

0

(f) Intermediate result 4

(c) Intermediate result 1

7

(d) Intermediate result 2

—

0

|
5
1

6

T

2

l— |

1

(g) Final output

Results: different building blocks

Results: different building blocks

Results: large input graph

Results: high-valence tree

Results: multi-floor constraints

Results: boundary constraints

Results: restricted door positions

Statistics

first .
success solution 10th solution
rate # of sol. [—) _
first/10th time time iter. #

avg/med | avg/med | avg/med

Fig 1 1/0.94 9.8 49/2.3 110.9/6.8 |51k/33k
Fig 7, top | 1/1 10 1.1/0.4]1.8/1.2 |7k/4k

Fig 7, bot |0.94/0.84 |9.3 23/18 48/40 229k/187k
Fig 8 0.98/0.98 |10 80/55 94/73 385k/295k
Fig 9 1/1 10 1.7/0.3 12/0.6 22k/6k

Conclusion

* A novel level layout synthesis method for
various design goals

* A graph-decomposition based layout strategy
for complex connectivity

* A stochastic optimization algorithm based on
configuration space for fast convergence

Future work

* Additional design goals
— Production scenarios

e Speedup

— More advanced stochastic search

* |[ncrease output variability
— Allow block deformation

Acknowledgements

* Anonymous reviewers

* NSERC, GRAND NCE and ERC ShapeForge
(StG-2012- 307877).

Thank you!

