
EUROGRAPHICS 2014 / B. Lévy and J. Kautz
(Guest Editors)

Volume 33 (2014), Number 2

Game Level Layout from Design Specification

Chongyang Ma∗‡ Nicholas Vining∗ Sylvain Lefebvre† Alla Sheffer∗

∗ University of British Columbia † ALICE/INRIA ‡ University of Southern California

Abstract

The design of video game environments, or levels, aims to control gameplay by steering the player through a
sequence of designer-controlled steps, while simultaneously providing a visually engaging experience. Traditionally
these levels are painstakingly designed by hand, often from pre-existing building blocks, or space templates. In this
paper, we propose an algorithmic approach for automatically laying out game levels from user-specified blocks.
Our method allows designers to retain control of the gameplay flow via user-specified level connectivity graphs,
while relieving them from the tedious task of manually assembling the building blocks into a valid, plausible
layout. Our method produces sequences of diverse layouts for the same input connectivity, allowing for repeated
replay of a given level within a visually different, new environment. We support complex graph connectivities and
various building block shapes, and are able to compute complex layouts in seconds. The two key components of our
algorithm are the use of configuration spaces defining feasible relative positions of building blocks within a layout
and a graph-decomposition based layout strategy that leverages graph connectivity to speed up convergence and
avoid local minima. Together these two tools quickly steer the solution toward feasible layouts. We demonstrate our
method on a variety of real-life inputs, and generate appealing layouts conforming to user specifications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

0

1

2

3

4

5
6

7

8
9

10

11
12

13

14

15

16

0

1 2

3

4

5
6

7

8

9
10

11

12

13

14

15

16

0

1
2 3

4

5 6 7 8

9 10
11 12 13

14
15 16

(b) Input planar graph

(c) Input building blocks

(d) Output level layout 1 (e) Output level layout 2

(a) Game maps from The Witcher and Dragon Age: Origin.

Figure 1: (a) Game levels. (b-e) Level layout synthesis.

1. Introduction

Typical video games contain complex virtual environments,
or game levels, that players must traverse in order to advance
through the story. Each level is a series of spaces, or rooms,
with connections [Bar03]. Designers typically enforce a
restricted level organization with linear passages that steers
players to progress through a number of specific challenges:
find a treasure, fight a monster, etc [Aar05]. Between each
of these steps, players may freely explore their environment
subject to the designer’s impediments upon their progress
[SZ03]. Rich, interesting game levels are a key component
of a successful game (Figure 1a). Our work automatically
computes visually engaging, complex, and diverse game
levels that conform with designer specifications (Figure 1b-e).

Level layouts are typically manually constructed by game
designers [Bar03]. Starting from a desired gameplay flow,
designers typically construct each level from a set of artist-
created building blocks, or spaces, some of which are unique
while others are reused from level to level [Per02, BP13].
Since levels are created manually, they typically remain
static from one gameplay session to another and the player
experience never changes; consequently, a player forced to

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



C Ma, N Vining, S Lefebvre, & A Sheffer / Game Level Layout from Design Specification

replay a level repeatedly experiences what is referred to as
‘grinding’. Some games (e.g. so-called ‘roguelikes’) offer
randomly generated levels, but the cost of random level
generation is that designer control is lost and they can no
longer steer the flow of gameplay [Cra04].

We propose a novel approach for game level layout genera-
tion, capable of automatically producing a variety of distinct
game levels for replay while still allowing the designer to
define the flow of gameplay. The input to our method consists
of a planar connectivity graph that reflects the designer-
intended gameplay flow (Figure 1b) and a set of polygonal
building blocks (Figure 1c). Each graph node corresponds to
a space, or room, in the desired layout, and the edges define
the connectivity between them. We use the graph to assemble
the building blocks into diverse possible layouts which satisfy
the gameplay-flow encoded by the graph (Figure 1d,e).

The technical challenge we face is to layout the blocks such
that two key constraints are satisfied: the layout must be
intersection-free, i.e. we require that blocks within each level
do not overlap, and must also satisfy all pairwise contacts -
each pair of blocks connected by a graph edge must share a
boundary segment long enough to place a doorway through.
The interplay between the need to move blocks together to
enforce contacts and the need to keep them apart to avoid
intersections make game level layout a challenging problem,
distinct from those addressed in other contexts (Section 2).

To obtain layouts that satisfy these constraints we develop an
optimization strategy that leverages two geometry processing
tools. First, we exploit graph connectivity to design a divide-
and-conquer layout strategy, speeding up convergence to valid
solutions. Second, instead of exploring the set of all possible
building block positions, our algorithm considers reduced,
continuous configuration spaces [LP83] defined for pairs of
adjacent blocks. We use these configuration spaces to quickly
evaluate contacts and to instantaneously improve them for
individual blocks. We use these two ingredients to efficiently
explore the solution space using a stochastic optimization
process. We leverage partial solution caching to facilitate
quick, on demand, generation of new distinct levels from the
same graph whenever a player repeats a given level.

Our contribution is two-fold. We introduce the first game
level layout algorithm for general 3D maps that provides
high-level designer-control of gameflow while enabling the
use of existing game building blocks. Our algorithm supports
complex planar graph layouts, including graphs with multiple
interconnected cycles that are common in game design, and
arbitrarily shaped polygonal building blocks. Designers can
enforce additional requirements on the generated levels,
such as associating graph nodes with particular blocks
and specifying appropriately connected multi-floor layouts
(Section 4). Our algorithm can easily be integrated into
existing game development workflows, and is suitable for a
wide range of genres. Our technical contribution is a practical
solution to a challenging layout problem, variants of which
had been shown to be PSPACE-complete [HSS84]. Our
experiments have shown our algorithm to robustly handle
a large spectrum of typical game layout inputs (Section 4).

2. Background and Related Work

Industry Practices. Virtual worlds in games can be decom-
posed into a series of areas or levels [Bar03, Aar05, HC12,
Ash11], Figure 1a. Games often include hundreds of levels,
each typically containing up to a few dozen connected
spaces [Bar03, Aar05]. Game designers use the connectivity
between the spaces to control the flow of gameplay and
to tell a compelling story [Cra04, Bar03, SZ03]. In typical
game design, each level is constructed by hand, in a time-
consuming and repetitive process. A widespread industry
practice [Per02, BP13] is to create a set of templates, or
building blocks, defining possible space shapes, and then
reuse those multiple times when assembling a level. This
approach allows for easy assembly of the final 3D realizations
of the layouts. These practices guide our choice of user input -
a graph defining the space connectivity and a set of 2D space
templates or building blocks.

Automating Level Generation. Shaker et al. [STN14]
discuss three methods for level generation. Recursive spatial
partitioning is commonly used for architectural floorplan lay-
outs and is not suitable for arbitrary game levels (see below).
Agent-based layout methods, such as the one employed by
Dungeons of Dredmor [Gas11], connect building blocks to
each other using a greedy strategy that maintains a queue of
“open positions” where a new door connecting two spaces
can be placed. To ensure contact and avoid intersections they
handle only acyclical layouts and use blocks quantized to
and aligned with a fixed grid. Methods inspired by cellular
automata [JYT10, ALM11] generate 2D layouts for organic
environments such as caves and do not support the predefined
blocks used to quickly assemble 3D levels.

Academic Research. The computer graphics community
has so far focused on placement of objects within levels.
e.g. [YYW∗12] which places sand, water traps and holes on
virtual golf courses, or on automatically adapting building
blocks extracted from game levels [CLDD09], and has not
addressed actual level layout. The artificial and computational
intelligence community also investigates level design; see
[TYSB11] for a comprehensive survey. The focus is on
designing engaging level structures, or quest graphs. This is
complementary to our goal as the generated quest graphs can
serve as inputs to our method. A number of approaches pro-
duce levels for two-dimensional "side-scroller" environments
[STY∗11], in which the X direction represents "progress" and
the "Y" direction represents vertical movement; we solve the
harder problem of generating two-dimensional floorplans for
3D levels, with "progress" described by an arbitrary planar
graph.

Graph Drawing. 2D planar graph drawing aims to gener-
ate intersection-free layouts of graphs that satisfy specific
user requirements [NR04]. Level layout requires placing
a polygonal building block at each vertex such that the
blocks do not intersect and such that each pair of blocks
corresponding to adjacent graph vertices share a common
boundary segment. While it is easy to extend traditional
graph-drawing algorithms to generate intersection-free block

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



C Ma, N Vining, S Lefebvre, & A Sheffer / Game Level Layout from Design Specification

layouts (one can simply scale a 2D graph embedding till the
blocks associated with each vertex no longer touch), it is the
requirement for contact that makes our problem significantly
harder. To the best of our knowledge this constraint had not
been addressed before in the graph drawing community.

Procedural Geometry Layout. A variety of procedural
methods have been successfully used for the design of
cities [PM01, MM08, CEW∗08, VKW∗12] and buildings
[WWSR03, MWH∗06, LCOZ∗11]. These approaches focus
on the plausibility and aesthetics of the outputs, and do not
aim to control contacts or adjacencies between individual
buildings or interior spaces.

Floorplan Layout. Our work has strong links to the gen-
eration of floorplans for architectural spaces, also known
as the spatial allocation problem [MS74, Sha87, Lig00, M-
SK10, LYAM13, BYMW13]. As research in this area has
focused on real-world architectural spaces, floorplans are
typically generated for predefined envelopes, rooms are
composed of axis-aligned walls, and no unoccupied voids
are allowed between rooms. The main degree of freedom in
this setting comes from the ability to scale rooms in the axial
directions and to relax contact constraints. Contrary to these
expectations, in a game setup we require the outputs to strictly
satisfy contacts and operate on user-specified arbitrarily-
shaped polygonal building blocks. At the same time, we have
no constraints on envelope shapes or on the location of voids.
In fact, flexible envelopes and interior voids are often used to
add visual interest to game levels (Figure 1a) and make the
layout feasible even for complex user-specified space graphs.

VLSI Layout. Our problem has some similarity to VLSI
circuit layout [She98]. VLSI layout algorithms search for the
best placement of axis-aligned cells and wires connecting
them on a compact chip such that wire length is minimized
and crossovers are avoided. This layout problem is known
to be NP-complete, and algorithms for solving it focus on
generating the best solution with considerable computational
effort; our work concentrates on quickly providing multiple
and varied layouts of differently shaped blocks strictly
satisfying contacts, modifying the layout envelope at will.

Configuration Spaces. In motion planning for robotics, the
configuration space of an object is the set of all possible
transformations that can be applied to the object while
avoiding intersections with other objects [LP83, LaV06].
Operating on the space of transformations converts complex
geometric problems into simpler ones by spatial collapse. We
use configuration spaces to assist in our space layout by for-
mulating contacts and intersection avoidance as restrictions
on configuration spaces. It has been observed that the general
configuration space form of our layout problem, expressed
solely for rectangular regions in a rectangular envelope, is
PSPACE-complete [HSS84].

3D Game Levels. 2D game levels and floorplans can be
converted into 3D architectural structures using a variety
of methods [YWR09, KW11, MM08]. Given a game level
layout assembled from a finite set of building blocks, Cabral
et al [CLDD09] generate seamless 3D levels by deforming the

Figure 2: Configuration spaces. Left: Configuration space
(red) of the square block (dark) with respect to the L-shaped
(light) one defines all the locations of the center of the square
in which the two blocks are in contact and do not intersect.
Right: Intersection of configuration spaces (yellow dots) of
the moving dark block with respect to the two light ones.
Pairwise configuration spaces shown in red.

blocks to match openings and appropriately resizing corridors,
doors and stairs. Our outputs can directly be used as the input
to their method.

3. Algorithm

Our method takes a planar graph and a set of 2D polygonal
building blocks as input data and generate various correspond-
ing valid level layouts by arranging the blocks such that each
graph node corresponds to an admissible building block, no
two blocks intersect, and each pair of blocks corresponding
to adjacent graph nodes share a common boundary segment
(see Figures 1 and 3).

Combined together, these requirements define a high-
dimensional, mixed continuous-discrete problem, where the
continuous degrees of freedom are the block positions and the
discrete ones are the node-to-block associations. A standard
approach to such mixed problems would be to define an
energy term encapsulating our requirements, and then to
attempt to find a layout that minimizes this energy term using
state-of-the-art stochastic optimization. However, naively
doing so fails to take advantage of domain specific knowledge.
Instead we use a tailored solution mechanism that leverages
key level layout properties to quickly generate diverse layouts
with high convergence rates. We compare our solution to
more standard approaches in Section 4.

We first note that given a layout where all but one node’s
blocks and positions are fixed, we can directly compute the set
of positions for the free node that best satisfy our constraints
locally (i.e. with respect to its adjacent graph nodes) by
computing the configuration space [LP83] of the block
associated with this node with respect to the neighboring
blocks (Section 3.1, Figure 2). Given a building block shape
associated with the node, this configuration space defines
a (possibly empty) set of line segments or points, such that
placing the center of the block at any point in the space locally
satisfies contacts and ensures that no local intersections
occur (Figure 2). We cannot formulate the entire level layout
problem solely as a configuration space computation, as
even a restricted version of such a computation is PSPACE-
hard [HSS84]. Using local configuration spaces within a

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



C Ma, N Vining, S Lefebvre, & A Sheffer / Game Level Layout from Design Specification

randomized optimization setup (Section 3.3), however, not
only lets us drastically speed up convergence but also supports
our variability goal as placing a block at any location inside
the configuration space locally satisfies our constraints.

A classical approach for speeding up optimization in high-
dimensional spaces is to reduce dimensionality by break-
ing the input problem into smaller easier to solve sub-
problems, appropriately communicating constraints between
sub-problem solves. Following this strategy, we break the
layout problem into a set of smaller ones, where at each
step we only process a portion of the input graph, thus
reducing the dimension of the search space (Section 3.2).
Our challenge is to appropriately define these subgraphs and
the communication strategy. A standard divide-and-conquer
approach would recursively split the problem into equal
smaller subgraphs, performing a bottom-up merge of partial
solutions. However, this leads to merging two large partial
solutions together, an operation as difficult as laying out
the entire graph at once. We instead propose an incremental
processing order, adding sequences of blocks (chains) to a
partial solution. The added chains have roughly the same
complexity, preventing the problem from growing out of
proportion. We ensure that the generated partial layouts are
both valid and connected at all times, increasing the odds that
they can be extended into valid full layouts of the entire input
graph. Our control mechanism allows for backtracking in the
rare cases that this extension process fails.

Our basic algorithm can be extended to support a number
of features desired by game level designers, showcased in
Section 4. These include fixed or restricted building blocks,
rotation and scaling of rooms, fixed positions, and multiple-
floor layout generation. In particular we automatically enrich
input building block sets by precomputing scaled and rotated
variations of the basic blocks, then allowing the optimizer to
select them as new blocks.

3.1. Configuration Space

In general, finding a high-dimensional configuration of
objects that satisfies a set of hard non-linear constraints
is known to be a difficult problem. However, we observe
that for level layouts we can use geometric tools to directly
compute local solution spaces, such that positioning a block
inside these spaces best satisfies both intersection and contact
constraints for this block with respect to its immediate
neighbors in the input graph. Specifically given a pair of
blocks, one fixed and one free, this set of valid positions is a
union of 1D line segments and can be computed analytically
(Figure 2, left). By leveraging these valid position sets, which
in robotics literature are referred to as configuration spaces
[LP83, LaV06], we dramatically reduce the size of the space
that we must search.

We compute the configuration space for a pair of blocks, one
of which is fixed and the other one of which is allowed to
move, as follows. We fix a reference point on the moving
block, e.g. its center, and consider all locations in R2 such
that, if the moving block is translated so that our reference

0 1 2

3
4 5

6 7 8

(e) Full solution 2

0

1

2

3

4

5

6

78

0

1

2

3

4

5

6

7
8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

3

4

0

1

3

4

(b) Partial solution 1 (c) Partial solution 2 (d) Full solution 1

(f ) Full solution 3 (g) Full solution 4

(a) Input graph

Figure 3: Incremental level layout. Here (b) and (c) show
two partial solutions after laying out the first chain; (d) and
(e) show two full solutions after extending the partial layout
in (b) to include the second chain; (f) and (g) show two full
layouts extending the partial layout in (c).

point is placed at this location, the stationary block and
the moving block contact each other but do not intersect.
Note that in order for two polygons to contact each other
along a non-zero length segment, allowing for a doorway
between them, they must touch along a common parallel
edge. As the moving block slides along this edge, the fixed
point on the moving block traces a line segment in Euclidean
space. Repeating this process for every pair of parallel edges
on the two blocks yields a collection of line segments, the
configuration space of the two blocks (Figure 2, left). For
each pair of parallel edges these segments can be computed
efficiently using any number of geometric computing engines.
The configuration space of a moving block with respect to
two or more stationary ones, is simply the intersection of the
individual configuration spaces placing the moving block in
valid contact with each of its neighbors - or, in other words,
the intersection of collections of line segments (Figure 2,
right). These are usually points, but can be line segments if
the block can contact both of its neighbors along two parallel
or collinear edges.

Since our block geometry is fixed during optimization we
precompute the configuration space for each pair of block
shapes, facilitating quicker processing later on.

3.2. Incremental Layout

Configuration spaces let us dramatically reduce the local
search spaces for individual graph nodes; however, the overall
search space we consider remains too large for a solution to be
located reliably, within a practical amount of time. To speed
up processing we break the layout problem into, smaller,
easier to solve ones. We note that chains, or graphs where
each node has at most two neighbors, are relatively easy to
lay out as the number of local contact constraints is always
smaller than the number of block edges. Since a game layout
is dominated by linear progression, we anticipate our input
graphs to be dominated by a small set of long chains. We

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



C Ma, N Vining, S Lefebvre, & A Sheffer / Game Level Layout from Design Specification

decompose our input graphs into chains, as described below,
taking particular care to address graphs with cycles where the
layout is more constrained.

Given a set of chains, we recall that our final output layout
has to be a single connected component; hence there is no
benefit in processing chains independently and then trying to
join them into a single layout. We therefore process the set of
chains incrementally (Pseudocode 1) using their adjacencies
to guide us. We first compute a set of possible layouts for
one chain, and then extend these partial layouts by adding
neighboring chains, i.e. those sharing graph edges with the
partial layout, one at a time, generating multiple extended
layouts and storing them. The process terminates once all
chains are processed and a sufficient number of layouts for
the entire input graph have been found, or when no more
distinct layouts can be computed. If an extension step fails,
we backtrack to the last previously computed and stored
partial layout and continue the extension process from it. An
extension typically fails if the partial layout it starts from
surrounds the blocks that need to come into contact with the
new chain (Figure 4). The goal of generating multiple partial
layouts instead of just one is twofold. First, we increase the
likelihood that at least one of these layouts can be extended
to a full layout, i.e. a layout of the entire graph. Second, by
pre-caching partial layouts we facilitate quick, on-demand,
creation of additional full layouts.

Pseudocode 1 Incremental level layout
Input: Planar graph G, building blocks B, layout stack S
1: procedure INCREMENTALLAYOUT(G, B, S)
2: Push empty layout into S
3: repeat
4: s←S.pop()
5: Get the next chain c to add to s
6: AddChain(c, s) //extend the layout to contain c
7: if extended partial layouts were generated then
8: Push new partial layouts into S
9: end if

10: until target # of full layouts is generated or S is empty
11: end procedure

Our strategy when decomposing the graph into chains and
when deciding on chain processing order is guided by two
factors. First, we observe that cyclical chains are significantly
more constrained than open-ended ones, as in the former
case the blocks must form a cycle, with the last and first ones
touching one another. We first decompose the input graph into
a set of cycles and trees, using a planar embedding of the input
graph generated using a standard algorithm [CP89], then find
all the faces in the embedding. This embedding serves only
for decomposition into chains and chain ordering, and the
positions are discarded. We form the first chain using the
edges of the face with the minimum number of edges in the
embedding. We then iteratively consider neighbouring planar
faces, picking a face and grouping all edges on that face that
are not already in a cycle into a new cycle. Given multiple
neighboring chains we select the shorter ones first. We repeat
the process until all faces are processed. The remaining

(a) Input graph (b) A bad partial layout

0

1 2

3 4 5 6 7

8 9

10
11 12 13 14

01

2

3

4

5

6
7

8

9

10

11

12

01

2

3

4

5

6
7

8

9

10

11

12

13

14

01

2

3

4

5

6

7

8

9

10

11

12

(c) A good partial layout after backtracking (d) Final solution

Figure 4: A partial layout (b) of the input graph in (a) cannot
be easily extended – rooms 13 and 14 cannot reach room 9.
Backtracking to a different partial layout (c) facilitates a full
layout generation (d).

acylical graph components are then processed in a breadth-
first order. The incremental layout processes the chains in
creation order (Pseudocode 1). Our motivation for trying to
place smaller cycles before larger cycles whenever possible
is that small cycles impose less constraints on subsequent
extension then larger ones. The breadth-first-order is chosen
due to similar considerations.

3.3. Chain Layout

The goal of the chain layout step is to extend a, possibly
empty, valid partial layout to include an additional chain
that is connected to this layout via one or more graph edges
(Figures 5 and 3). In other words, we need to find blocks
and positions for the nodes of the added chain such that the
extended layout is valid. To assist the layout of this new chain,
we allow changes to the input partial layout, but keep the
probability of those low. As earlier noted, instead of searching
for one extended layout, we need to search for multiple ones
to increase the chances of success in subsequent iterations of
the chain-by-chain layout process.

To achieve this goal we use a simulated annealing framework,
as its built-in randomization process is, in our experience,
especially well suited for exploring multiple solution al-
ternatives (Pseudocode 2). Simulated annealing operates
by iteratively considering local perturbations to the current
configuration, or layout, and moving to these configurations
with some probability based on the energy of each new config-
uration and the current annealing temperature. Configurations
that lower the energy have a higher probability of acceptance.
As it proceeds, it keeps track of the best solution encountered,
or, in our case, of the different valid layouts encountered.

Energy Function. Our energy function is designed to heavily
penalize both intersections and missing contacts, and uses
exponential terms designed to drop dramatically whenever

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



C Ma, N Vining, S Lefebvre, & A Sheffer / Game Level Layout from Design Specification

0 1 2

3

456

7

01

2

3

4

5 6

7

01
2

3

4

5 6

7

01
2

3

4

5 6

7

01
2

3

4
5

6

7

01
2

3

4
5

6

7

01
2

3

4
5 6

7

(b) Initialization (c) Intermediate result 1 (d) Intermediate result 2 (e) Intermediate result 3 (g) Final output(a) Input graph (f ) Intermediate result 4

Figure 5: Chain layout. While some updates, e.g. (f) to (g) lower the energy, others support exploring the configuration space by
accepting states that keep the energy constant or even increase it, e.g. (c) to (d).

Pseudocode 2 Extend partial layout s adding the chain c
1: procedure ADDCHAIN(G, B, S, c, s)
2: t← t0 // Initial temperature
3: for i← 1,n do // n: # of cycles in total
4: for j← 1,m do // m: # of trials per cycle
5: s′← Locally perturb s∪ c
6: if s′ is valid then
7: if s∪ c is full layout then output it
8: else if s′ passes variability test
9: Push s′ into S

10: Return if enough extended layouts computed
11: end if
12: end if
13: if ∆E < 0 then // ∆E = E(s′)−E(s)
14: s← s′

15: else if rand() < e−∆E/(k∗t) then
16: s← s′

17: else
18: Discard s′

19: end if
20: end for
21: t← t× ratio // Cool down temperature
22: end for
23: end procedure

an intersection is removed or a contact is achieved.

E = e
A
σ · e

D
σ −1 (1)

A is the total area of intersection between two blocks in the
layout and D is the sum of squared distances between the
center of pairs of blocks that are connected in the extended
subgraph, but which are not in contact (or share a segment
shorter than the user specified doorway width). The choice of
σ impacts how frequently the annealing is allowed to move to
higher-energy configuration. A smaller value of σ produces
a higher success ratio, and a larger value of σ produces
a quicker convergence. Empirically we found that setting
σ to one hundred times the average block area provides a
reasonable trade-off between the two.

Initialization. To speed up processing we aim to start the
annealing in a low energy configuration. To this end, we
generate a BFS ordering of the chain blocks starting with
those adjacent to the input partial layout if one exists, or with
a random root block otherwise. We place the blocks one at a
time, sampling their configuration space with respect to their
already laid out neighbors and selecting the sampled position
with the lowest energy.

Local Perturbation. We perturb the current layout by

changing the block position, or the node-to-block association,
of one node in the extended graph containing both the nodes
corresponding to the input partial layout and those of the
currently processed chain. When deciding on the node to
perturb, we only consider nodes in the currently added
chain and nodes in the previous layout with non-zero energy
(thus minimally perturbing the input partial layout). In our
implementation, we set the ratio of position perturbations to
node-to-block association changes to 7 to 3. When computing
a new block position, instead of considering the Euclidean
space around the current position, we directly consider the
local configuration space of the given block with respect
to its adjacent blocks in the extended graph. To do so, we
compute the intersection of all configuration spaces of the
block with respect to each individual adjacent block. We
then randomly sample this intersection space to obtain a
new position. If this intersection is empty, we compute the
maximal non-empty intersection of spaces, and sample it
instead. Using this approach we locally maximize the number
of contacts satisfied at each iteration, pushing the layout
closer to a desirable global solution.

Processing Valid Layouts. After each local perturbation, we
check to see if the extended layout is now valid. We note
that having each block within the configuration space of its
neighbors is not sufficient for validity, and that we must also
check for intersections between pairs of non-adjacent blocks.
Each valid layout, which differs sufficiently from previously
located ones, is placed on the stack for further processing by
the incremental layout framework. The similarity between
two partial layouts is defined as the sum of squared distances
between corresponding block centers, after centering the
two layouts around the origin. We terminate the algorithm
when enough newly valid extended layouts have been found.
For partial layouts we generate up to 15 variations. When
processing the last chain, i.e when the output is a layout of the
entire input graph, we use the user-specified target number of
layouts.

Parameters. Pseudocode 2 uses n = 50 and m = 500 as the
numbers of cycles and trials per cycle, t0 = 0.6 and t1 = 0.2
as the initial and final temperatures. The coefficient k in line
15 is computed using ∆E averaging [Hed13].

4. Results

Throughout the paper we demonstrate the layouts generated
by our method on nine different input connectivity graphs
and multiple sets of building blocks. For all these inputs
our method was able to generate multiple diverse layouts,

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



C Ma, N Vining, S Lefebvre, & A Sheffer / Game Level Layout from Design Specification

(a) (d)

(c) (b) (e)

Figure 6: Building block sets used throughout the paper.

with some representative examples shown throughout the
paper. As demonstrated in Figure 1 our input graphs are
representative of the type of layouts commonly used in
games, which contain multiple cycles and use up to a dozen
differently shaped blocks.

Figure 7 showcases our ability to handle different types of
building blocks, from rectangles, frequent in architectural
layouts, through more complex axis-aligned shapes, to rich
sets of diversely shaped polygons. Our method is able to
painlessly process the different block sets, generating visually
interesting and often surprising layouts from complex graphs
with multiple cycles. It successfully tackles large graphs such
as the one shown in Figure 8 which has forty vertices and
leverages backtracking (Figure 4) to process graphs with high
valence vertices (Figure 9), where contacts are particularly
challenging to satisfy.

Figure 10 demonstrates the application of our method to
multi-floor layouts. Here we use positional constraints on
layouts generated for the second and third floors, forcing the
highlighted blocks to match their first floor counterparts. In
Figure 11 we generate layouts with walk-through corridors
by constraining the configuration spaces of the corresponding
blocks to allow contacts only at the two corridor ends. This
example is typical of commonly used dungeon level designs.
Figure 12 showcases another type of constraints - preventing
the layout from intersecting user provided obstacles.

Statistics. Since we use a stochastic framework our method’s
behavior depends on the seeding of the different randomized
components. To evaluate speed and robustness we ran the
algorithm 50 times with different randomization seeds for
each combination of input planar graph and building blocks.
We record the rate of successfully computed valid solution,
as well as the runtime required to find the first solution, and
also the time and iteration count (i.e. trials to locally perturb a
layout) necessary to compute ten solutions, see Table 1. Our
success rate is very high, a perfect 50/50 on simple graphs
and well over 90% for others. The only exception is the graph
in Figure 7 which contains multiple interconnected cycles and
is therefore particularly challenging to process. The layout
cost is quickly amortized: For Figure 1, the first solution is
obtained after 4.9 seconds, but the cost per–solution drops
to 1.1 second after generating ten different solutions (as
guaranteed by the variability test). Even on the most complex
graphs the amortized cost is less than 10s per layout. This
makes our scheme perfectly suited for our goal of generating
many layout variations from a level specification.

Impact of Design Choices. We evaluated our algorithm
design choices by comparing our results to those generated
using alternative, more generic approaches (Table 2). We
tested our solution framework without configuration spaces,

success
rate

#sol. first
solution

ten solutions

first/ time time iter. #
tenth avg/med avg/med avg/med

Fig 1 1/0.94 9.8 4.9/2.3 10.9/6.8 51k/33k
Fig 7,top 1/1 10 1.1/0.4 1.8/1.2 7k/4k
Fig 7,bot 0.94/0.84 9.3 23/18 48/40 229k/187k
Fig 8 0.98/0.98 10 80/55 94/73 385k/295k
Fig 9 1/1 10 1.7/0.3 2/0.6 22k/6k

Table 1: Algorithm statistics. We provide success rates for
generating one or ten layouts, the average number of layouts
created when ten were asked for (includes the unsuccessful
attempts), times (sec) for generating one or ten layouts and
iteration counts (thousands) for the later. We provide both
average and median values as the average can be heavily
influenced by outlier runs.

success #sol. first solution
rate time iter. #

first/tenth avg/med avg/med
NO config. space
Fig 7,top 0.4/0 1 64/64 9k/4k
Fig 9 0.7/0 1 51/38 9k/1.5k
NO inc. layout:
Fig 7,top 0.7/0 3.5 1.4/0.8 8k/1k
Fig 9 0.76/0 3.8 1.6/1.2 8k/5k

Table 2: Statistic for algorithmic alternatives measured on
graphs in Figure 7,top and 9. Both have significantly lower
success rate for generating one result and never even come
close to generating ten results. The non incremental method,
when successful generates at most 3.5 results (on average).
Without using configuration spaces we ar enot able to ever
generate more than one result on even the simplest graphs.

using a purely energy-based formulation. Using constant or
randomized changes in position, the method was never able to
satisfy contacts exactly. We were more successful when using
a combination of random walk and line search for locating
lower energy close-by configurations (Table 2). However
even on simple examples, the success rate remained very low
and when convergence did occur, runtimes were fifty times
worse than ours. Additionally, we were able to find at most
one solution during a trial run (Table 2). We also examined
the impact of skipping the incremental layout process and
optimizing the entire layout at once using the framework in
Section 3.3. Without the incremental layout, even for our
simplest inputs we were only able to achieve valid solutions
70% of the time, and were only ever able to find at most
5 solutions when searching for 10 (Table 2). While more
advanced stochastic methods may in theory perform better,
our approach as-is quickly achieves the desired solution.

To perform the comparison, we ran each algorithm 50 times
with different seeds using the same input planar graph and
building blocks, on the graphs in Figures 7, top and 9. As
shown in Table 2 using either of the simplified methods
drastically reduces the percentage of successful runs (ones
where a layout is successfully obtained), and were unable to
generate multiple solutions when requested.

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



C Ma, N Vining, S Lefebvre, & A Sheffer / Game Level Layout from Design Specification

0

1

2

3

4

5

6

7

8 0

1

2

3

4

5

6 7

8

0

1

23

4

5

6

7

8

0

1
2

3

4

5
6

7

8

0

1

2

3

4

5 6

7 8

0

1

2

3

4

5

6

7

8

0 1

2

3

45

6

7

8

0 1

23

4

5

6

7

8

0 1

2

3 4

5

6

7

8

0

1

2

3

4
5

6

7

8

0

1

2

3

4 5

6

7

8

0

1

2
3

4
5

6

7

8

9

10

11

12

13

14

1516

0
1

2

3

4

5

6
7

8

9

10
11

1213

14

1516

0

12

3

4

5

6

7

8
9

10

11

12

13

14

15

16

0
1

2

3

4

5
6

7

8

9

1011

12
13

14

15 16

0

1

2

3
4

5
6

7

8

9

1011

12
13

14

15

16 0

1

23

4 5

6

7
8

9
10

11
12

13

14 15

16

0

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

1

2

3

4

5
6

7

8

9

1011

12 13

14 15
16

01

2

3
4

5
6

7

8
9

10

11
12

13
14

15

16

0

1

2

3 4

5

6
7

8

9

10

11

12

13

141516

Figure 7: Layouts generated from two input graphs using different sets of building blocks from Figure 6.

0

1 2
3

4

5 6
7

8

9
10

11 12

13 14
15

16 17 18
19 20

21
22

23

24
25

26

27 28
29 30

31
32

33

34
35 36

37
38 39

40

0

1

2

3

4

5
6

7

8

9

10
11 12

13 14

15

16

17

18 19

20

21

22

23

24

25
26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

0

1

2

3

4

5

6 7

8

9

10

11 12

13

14

1516

17
18 19

20

21

22

23

24

25

26

27

28

29

30

31
32

33

34

35

36
37

38

3940

0
1

2

3

4

5
6

7

8

9

10

11

12

13
14

15

16

17

18
19

20

21

22 23

24

25

26

27

28

29

30

31

32
33

34
35

36

37
38

39

40

Figure 8: Diverse layouts created using the same graph and block set.

We asked ten professional game developers from independent
and AAA studios to review our generated layouts. Feedback
was uniformly positive; results were rated as being "nice
and natural", "more complex than can easily be made by
hand", and "layout and packing feel good". One designer
suggested our work as a brainstorming tool for exploring level
ideas. One designer asked for doors to not be placed directly
opposite each other, and we can account for this by adjusting
the configuration spaces at each step of the algorithm.

Discussion. There is an intriguing link between the shape of
the blocks and the existence of a solution. Consider a cycle
of four blocks all connected to a single, enclosed block. If the
only available shape is a rectangle twice as long as it is high,
then the cycle does not offer enough space to fit the block
inside. This is a very simple instance of a more subtle issue:
whenever the graph is made of nested cycles, using shapes
elongated along the same axis will make the layout more
challenging, as their aspect ratio limits the available area
enclosed by a cycle of a given number of blocks. Similarly,

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.



C Ma, N Vining, S Lefebvre, & A Sheffer / Game Level Layout from Design Specification

0

1 2

3 4 5 6 7

8 9

10
11 12 13 14

0

1
23

4

5

6

7

8

9

10

11

12

13

14

0

1 2

3

4
5

6

7

8
9

10

11

12
13

14 0

1

2

3

4 5

6
7

8

9

10 11

12 13

14

Figure 9: Level layouts for a tree with high valence vertices.

some shapes may induce a directivity in the layout because
they offer a simpler or longer edge interface on one side.
Therefore, a good guideline for designers is to provide a
sufficient variety of shapes, globally having wall interfaces
in all directions. This limits biases during the layout process.
Note that this issue is unique to our setting: Approaches
for architectural floor planning [MSK10, LYAM13] do not
consider this constraint and let the shape of the rooms emerge
from the optimization.

5. Conclusions

We presented the first method for game level layout able to
preserve designer-intended gameflow. Given a user-specified
layout connectivity graph our method is fast enough to on-
demand generate different diverse layouts that satisfy the
contact constraints imposed by the graph, supporting an
enjoyable replay experience. Our experiments show that our
method can robustly handle complex graph representative of
typical game levels.

Our current algorithm is designed to satisfy hard constraints
such as intersection-avoidance and contact. It would be
interesting to investigate additional criteria to guide level
synthesis based on design goals in production scenarios.
While the speed of our method is acceptable for most
gameplay setups, it would be interesting to explore future
speedups, e.g. by replacing the simulated annealing with
more sophisticated stochastic search techniques. The key here
would be to achieve speedup, without sacrificing the output
variability we currently achieve. Finally, we may explore
ways to increase output variability, e.g. by allowing blocks to
deform during layout computation.

Acknowledgements We thank anonymous reviewers for
their valuable comments. This research was partly supported
by NSERC, GRAND NCE and ERC ShapeForge (StG-2012-
307877).

References
[Aar05] AARSETH E.: From hunt the wumpus to everquest: Intro-

duction to quest theory. In Proceedings of the 4th International
Conference on Entertainment Computing (2005), Springer-Verlag,
pp. 496–506. 1, 2

[ALM11] ASHLOCK D., LEE C., MCGUINNESS C.: Search-
based procedural generation of maze-like levels. IEEE Trans.
Comput. Intellig. and AI in Games 3 (2011), 260–273. 2

[Ash11] ASHBY A.: Legend of Zelda: Skyward Sword (Prima
Official Game Guide). Prima Games, 2011. 2

[Bar03] BARTLE R.: Designing Virtual Worlds. New Riders
Games, 2003. 1, 2

[BP13] BURGESS J., PURKEYPILE N.: Skyrim’s modular ap-
proach to level design. Game Developers Conf., 2013. 1, 2

[BYMW13] BAO F., YAN D.-M., MITRA N. J., WONKA P.:
Generating and exploring good building layouts. ACM Trans.
Graph. 32, 4 (2013), 122:1–122:10. 3

[CEW∗08] CHEN G., ESCH G., WONKA P., MÜLLER P., ZHANG
E.: Interactive procedural street modeling. ACM Trans. Graph.
27, 3 (2008), 103:1–103:10. 3

[CLDD09] CABRAL M., LEFEBVRE S., DACHSBACHER C.,
DRETTAKIS G.: Structure-Preserving Reshape for Textured
Architectural Scenes. Computer Graphics Forum 28, 2 (2009),
469–480. 2, 3

[CP89] CHROBAK M., PAYNE T.: A linear-time algorithm for
drawing a planar graph on a grid. Information Processing Letters
54 (1989), 241–246. 5

[Cra04] CRAWFORD C.: Chris Crawford on Interactive Story-
telling. New Riders Games, 2004. 2

[Gas11] GASLAMP GAMES, INC.: Dungeons of dredmor, 2011.
URL: http://www.gaslampgames.com. 2

[HC12] HODGSON D., CORNETT S.: Elder Scrolls V: Skyrim
Revised and Expanded: Prima Official Game Guide. Prima Games,
2012. 2

[Hed13] HEDENGREN J.: Simmulated annealing tutorial,
2013. URL: http://apmonitor.com/me575/index.
php/Main/SimulatedAnnealing. 6

[HSS84] HOPCROFT J., SCHWARTZ J., SHARIR M.: On the
complexity of motion planning for multiple independent objects;
pspace hardness of the "warehouseman’s problem". International
Journal of Robotics Research 4, 3 (1984), 76–88. 2, 3

[JYT10] JOHNSON L., YANNAKAKIS G. N., TOGELIUS J.:
Cellular automata for real-time generation of infinite cave levels.
In Proc. 2010 Workshop on Procedural Content Generation in
Games (2010), pp. 10:1–10:4. 2

[KW11] KELLY T., WONKA P.: Interactive architectural modeling
with procedural extrusions. ACM Trans. Graph. 30, 2 (2011), 14:1–
14:15. 3

[LaV06] LAVALLE S. M.: Planning Algorithms. Cambridge
University Press, Cambridge, U.K., 2006. 3, 4

[LCOZ∗11] LIN J., COHEN-OR D., ZHANG H., LIANG C.,
SHARF A., DEUSSEN O., CHEN B.: Structure-preserving
retargeting of irregular 3d architecture. ACM Trans. Graph. 30, 6
(2011), 183:1–183:10. 3

[Lig00] LIGGETT R.: Automated facilities layout: past, present
and future. Automation in Construction 9, 2 (2000), 197–215. 3

[LP83] LOZANO-PÉREZ T.: Spatial planning: A configuration
space approach. IEEE Trans. on Comp. 32 (1983), 108–120. 2, 3,
4

[LYAM13] LIU H., YANG Y.-L., ALHALAWANI S., MITRA N.:
Constraint-aware interior layout exploration for pre-cast concrete-
based buildings. The Visual Computer 29, 6-8 (2013), 663–673.
3, 9

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.

http://www.gaslampgames.com
http://apmonitor.com/me575/index.php/Main/SimulatedAnnealing
http://apmonitor.com/me575/index.php/Main/SimulatedAnnealing


C Ma, N Vining, S Lefebvre, & A Sheffer / Game Level Layout from Design Specification

0 1

23

4 5

6 7 8

0

1

2

3

4

5

6

7

8

9

10

0 1
2

3

4

5

6

7

8 9

10 11

12
0 1 2

3 4 5

6 7 8

0
1

2

3
4

5

6
7

8

9 10

0
1 2

3 4

5

6

7

8
9

10

11

12

Figure 10: Multi-floor layout generated by constraining stairwells (dark gray) to match on all floors.

0
1 2

3 4

5

6

7

8
9

10

11

12

0

1
2

3

4

5
6

7

89

10
11

12

0

1
2

3

4

5 6

7

8

9

101112

0
1

2
3 4

5
6

7

8

9
10

11

12

Figure 11: Layout with restricted door positions. Here we
use two set of building blocks for different types of nodes in
the input planar graph (top-left). The red nodes correspond
to room blocks, while the green nodes correspond to narrow
corridors with door positions restricted to be at the two ends.

[MM08] MERRELL P., MANOCHA D.: Continuous model
synthesis. ACM Trans. Graph. 27, 5 (2008), 158:1–158:7. 3

[MS74] MARCH L., STEADMAN P.: The geometry of environment:
an introduction to spatial organization in design. M.I.T. Press,
1974. 3

[MSK10] MERRELL P., SCHKUFZA E., KOLTUN V.: Computer-
generated residential building layouts. ACM Trans. Graph. 29, 6
(2010), 181:1–181:12. 3, 9

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GOOL L.: Procedural modeling of buildings. ACM Trans.
Graph. 25, 3 (2006), 614–623. 3

[NR04] NISHIZEKI T., RAHMAN M.: Planar Graph Drawing.
Lecture notes series on computing. World Scientific, 2004. 2

[Per02] PERRY L.: Modular level and component design. Game
Developer Magazine (2002). 1, 2

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural modeling of
cities. In Proc. SIGGRAPH (2001), pp. 301–308. 3

[Sha87] SHAVIV E.: Principles of computer-aided design: com-
putability of design. Wiley-Interscience, New York, NY, USA,
1987, pp. 191–212. 3

[She98] SHERWANI N. A.: Algorithms for VLSI Physcial Design
Automation, 3rd ed. Kluwer Academic Publishers, Norwell, MA,
USA, 1998. 3

[STN14] SHAKER N., TOGELIUS J., NELSON M. J.: Procedural
Content Generation in Games: A Textbook and an Overview of
Current Research. Springer, 2014. 2

[STY∗11] SHAKER N., TOGELIUS J., YANNAKAKIS G., WEBER
B., SHIMIZU T., HASHIYAMA T., SORENSON N., PASQUIER P.,

0 1 2 3

4

5

6789

10

11

0

1

2

3
4

5

6

7
8

9

1011

0

1 2

3

4

5

6
7

8
9

10

11

0
1

2 3
4

5

6

7
89

10

11

0

1 2
3

4

5

67

8
9

10

11

0
1 2

3

4

5
67

8

9

10

11

Figure 12: Constrained levels designed to avoid different
polygonal obstacles. These types of constraints are frequent
in games, e.g. designing a palace to wind around a lake.

MAWHORTER P., TAKAHASHI G., SMITH G., BAUMGARTEN R.:
The 2010 mario ai championship: Level generation track. IEEE
Trans. Comput. Intellig. and AI in Games 3, 4 (2011), 332–347. 2

[SZ03] SALEN K., ZIMMERMAN E.: Rules of Play: Game Design
Fundamentals. The MIT Press, 2003. 1, 2

[TYSB11] TOGELIUS J., YANNAKAKIS G. N., STANLEY K. O.,
BROWNE C.: Search-based procedural content generation: A
taxonomy and survey. IEEE Trans. Comput. Intellig. and AI in
Games 3, 3 (2011), 172–186. 2

[VKW∗12] VANEGAS C. A., KELLY T., WEBER B., HALATSCH
J., ALIAGA D. G., MÜLLER P.: Procedural generation of parcels
in urban modeling. Comp. Graph. Forum 31 (2012), 681–690. 3

[WWSR03] WONKA P., WIMMER M., SILLION F., RIBARSKY
W.: Instant architecture. ACM Trans. Graph. 22, 3 (2003), 669–
677. 3

[YWR09] YIN X., WONKA P., RAZDAN A.: Generating 3d
building models from architectural drawings: A survey. IEEE
Comput. Graph. Appl. 29, 1 (2009), 20–30. 3

[YYW∗12] YEH Y.-T., YANG L., WATSON M., GOODMAN
N. D., HANRAHAN P.: Synthesizing open worlds with constraints
using locally annealed reversible jump mcmc. ACM Trans. Graph.
31, 4 (2012), 56:1–56:11. 2

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.


