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1 Network Details

We provide details of our proposed network in Fig. 1. Our network consists of
two parts: (1) a weight-sharing fully convolutional neural network for extracting
features from a given view and a 3D query point (Fig. 1a), and (2) a classification
network (Fig. 1b) that consumes multi-view features from the preceding networks
and predicts per-point probabilities of lying inside and outside the reconstructed
object.

The feature extraction network aggregates features of multiple scales. The
input image is first processed by a convolutional layer and then passed to six
down-scaling units. Each unit is composed of one max pooling layer and two
convolutional layers, halving the size of feature map and, in the meanwhile,
doubling the feature channels. At each level of feature map, we compute the local
coordinate of the projection of query point and apply bilinear interpolation to
retrieve the feature vector at the projected location. Feature vectors from different
channels are concatenated to obtain the signature at each scale. The multi-scale
features are further concatenated and then enhanced by a 3-layer MLP network
to obtain scale-invariant per-view features. Note that each convolutional layer
contains a ReLU activation layer at its output. In addition, batch normalization
is applied to all convolutional layers. The parameter settings for each layer can
be found in Fig. 1.

The classification network first concatenates feature vectors from all input
views and then apply both max and average poolings. The outcome of the two
pooling layers are concatenated again and passed to a 2-layer MLP network for
inferring the values of Pin and Pout, which stand for the probability of staying
inside and outside the object surface, respectively.

2 Quantitative Results

We quantitatively evaluate the reconstruction errors of visual hull based recon-
struction and our approach. We test both methods on the captured multi-view
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Fig. 1: Detailed Network Architecture
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sequences from [1]. For quantitative metric, we first compute the mesh-to-scan
(M2S) distance, defined as the median of the Euclidean distances from all vertices
on the reconstructed mesh to the closest points on the ground truth scan. We then
calculate the reconstruction error by computing the median of the M2S distances
of a whole sequence. A lower reconstruction error indicates better reconstruction
quality. As shown in Table 1, when only three or four views are used as input,
our method outperforms visual hull by a large margin in terms of reconstruction
accuracy.

Further, we evaluate the completeness of reconstruction by measuring scan-to-
mesh (S2M) distances, defined in a similar way as mesh-to-scan distances, but to
change the vertex matching direction. A lower scan-to-mesh distance indicates a
more complete reconstruction. As shown in Table 2, when only three or four views
are used as input, our method outperforms visual hull in terms of reconstruction
completeness for most of the sequences.

Sequence name Samba Crane Bouncing Jumping Handstand

Visual hull (3 views) 1.728 2.532 2.535 2.372 2.272
Visual hull (4 views) 0.972 1.244 1.221 1.264 1.257
Ours (3 views) 0.847 0.902 1.106 1.084 1.374
Ours (4 views) 0.565 0.582 0.844 0.742 0.871

Table 1: Quantitative comparison of reconstruction errors between visual hull
and our method. Here we show the median distance for each test data sequence,
in centimeters.

Sequence name Samba Crane Bouncing Jumping Handstand

Visual hull (3 views) 0.877 1.293 1.684 1.224 1.220
Visual hull (4 views) 0.627 0.851 0.904 0.882 0.877
Ours (3 views) 0.735 0.825 0.999 0.993 1.122
Ours (4 views) 0.578 0.646 0.896 0.781 0.892

Table 2: Quantitative comparison of reconstruction completeness between visual
hull and our method. Here we show the median distance for each test data
sequence, in centimeters.

In Figure 2, we show the cumulative histogram of point-to-scan distances
computed over all 5 test sequences, which shows more details about the error
distributions. For visual hull based reconstruction, there are 47.3% and 64.2%
reconstructed vertices staying within 2cm from the ground truth mesh, given 3
and 4 views respectively. In comparison, our approach provides more accurate
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reconstruction as 72.0% and 87.6% vertices of the reconstructed mesh are within
2cm from ground truth surface, when 3 and 4 views are available respectively.
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Fig. 2: Cumulative error histogram for point-to-scan distances computed over all 5 test

sequences from [1].

3 Video

We provide more results on animation input in the accompanying video [2]. Please
refer to the video for the following results:

- Reconstruction results using 4 views from real-world data;
- Reconstruction results using 4 views from synthetic data;
- Comparison of reconstructions using different number of views;
- Comparison of reconstructions against visual hull and Vlasic et al.[1];
- Comparison of reconstructions against visual hull and Starck et al.[3];
- Results reconstructed from novel viewpoints that not appeared in training;
- Examples of synthetic training data.
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