
A Supplementary Materials

For easy reference we have summarized the basic algorithm in
Pseudocode 1.
functionO← Synthesize(I)

//O: output
// I: input exemplar
O0← Initialize(I)
foreach time step t
Ot← Advect(Ot−1) // application specific advection
Ot← Optimize(I,Ot) // compute one frame

end

functionOt← Optimize(I,Ot)
iterate until convergence or enough # of iterations reached
{n(si)} ← Search(Ot, I) // search phase
Assign({n(si)},Ot) // assignment phase
extra solver steps

end
returnOt

function {n(si)} ← Search(Ot, I)
foreach element so ∈ Ot

n(so)← output neighborhood around so
n(si)← find most similar neighborhood to n(so) for si ∈ I

end
return {n(si)}

function Assign({n(si)},Ot)
foreach output element so ∈ Ot

p(so)← least squares from predicted positions
end

Pseudocode 1: Dynamic element textures for frame-by-frame synthesis.

A.1 Algorithm Enhancements

Here we describe enhancements in speed and quality of our basic
algorithm.

Factorization Due to the high dimensionality of the state spaces
for dynamic element textures, we cannot expect small input exem-
plars to provide sufficient coverage for all plausible configurations.
Fortunately, we have observed that many phenomena have only
loosely coupled spatial geometries and temporal motions. This
allows us to perform factorization to enhance synthesis quality.
Specifically, given an output neighborhood, we first extract its spatial
and temporal parts (the horizontal and vertical portions as illustrated
in Figure 3 right), and find the corresponding spatial- and temporal-
only best matches in the search step. Both of the two matches
provide its own predictions for the relative positions during the
assignment step.

Order-independence Our method can be made order-
independent [Lefebvre and Hoppe 2005] in addition to being
parallel. That is, it can compute a specific spatial-temporal subset
of the output without touching the entire volume, with consistent
results regardless of the chosen subset. The key idea, similar to prior
order-independent methods, is to gradually expand the footprint
from the output subset towards earlier iterations, and synthesize the
footprint from earlier to later iterations. Order-independence can be
very helpful in a variety of scenarios, such as parallel computing
multiple frames of the same animation, or interactive editing for a
specific spatial-temporal constraint.

Figure 15: Neighborhood graph examples. Here we visualize the
neighborhood graph by projecting high dimensional neighborhoods onto 2D
plane via principal component analysis. Each red point represents an input
spatial neighborhood while the blues lines represent generated motion paths
between similar neighborhoods. See the tree results in the accompanying
video for the corresponding animations.

A.2 Usage

To use our system, users simply specify the detailed input exemplar
and coarse output constraints.

Input exemplar Our method is agnostic with respect to how the
input exemplars are prepared; potential methods include manual
specification, procedural modeling + animation, physical simulation,
and data capture. Note that once an input exemplar is prepared, it
can be reused for many different outputs.

Output constraint Output constraints for our system can be
classified along two main orthogonal dimensions: local versus global
× spatial and/or temporal. In particular, a local/global constraint
affects a small/large set of samples, and a spatial/temporal constraint
is about static-shapes/dynamic-motions. Our system simply treats
all constraints as collections of individual spatial-temporal sample
constraints and feed them into our constrained synthesis algorithm
in Section 4.1.

There are also additional constraints, such as physical sub-solver,
that do not neatly fit into the classification above. These can be
specified as additional energy terms or solver steps as described in
Section 4.1.


