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Figure 1: Dynamic element textures. Our method synthesizes a variety of repetitive spatial-temporal phenomena, such as particles, threads, and sheets, via
a combination of constrained optimization and data driven computation. It offers control at both the coarse scale through spatial-temporal constraints (e.g.
overall output shape and movement) and the fine scale through small input exemplars (bottom-left inlet of each image), which may be static (a) or animated (b),
(c) and (d). Please refer to the accompanying video for corresponding animations of our results.

Abstract

Many natural phenomena consist of geometric elements with
dynamic motions characterized by small scale repetitions over
large scale structures, such as particles, herds, threads, and sheets.
Due to their ubiquity, controlling the appearance and behavior of
such phenomena is important for a variety of graphics applications.
However, such control is often challenging; the repetitive elements
are often too numerous for manual edit, while their overall structures
are often too versatile for fully automatic computation.

We propose a method that facilitates easy and intuitive controls
at both scales: high-level structures through spatial-temporal
output constraints (e.g. overall shape and motion of the output
domain), and low-level details through small input exemplars (e.g.
element arrangements and movements). These controls are suitable
for manual specification, while the corresponding geometric and
dynamic repetitions are suitable for automatic computation. Our
system takes such user controls as inputs, and generates as outputs
the corresponding repetitions satisfying the controls.

Our method, which we call dynamic element textures, aims to
produce such controllable repetitions through a combination of
constrained optimization (satisfying controls) and data driven com-
putation (synthesizing details). We use spatial-temporal samples as
the core representation for dynamic geometric elements. We propose
analysis algorithms for decomposing small scale repetitions from
large scale themes, as well as synthesis algorithms for generating
outputs satisfying user controls. Our method is general, producing
a range of artistic effects that previously required disparate and
specialized techniques.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;
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1 Introduction

Many natural phenomena are characterized by intricate interplays
between repetitive geometric structures and dynamic motions, such

∗Part of this work was conducted while Chongyang Ma was a visiting
student in ALICE/INRIA and a research intern in Microsoft Research Asia.

as advecting particles [Zhu and Bridson 2005; Narain et al. 2010],
flocking herds [Narain et al. 2009; Ju et al. 2010; Sewall et al. 2011],
undulating threads [Wang et al. 2009], and waving sheets [Wang et al.
2010; Kavan et al. 2011]. Due to their ubiquity and rich variety, such
phenomena have long been important for many graphics effects. A
central challenge from the authoring perspective is control: manual
edits can be too tedious due to the numerous repetitions, while
automatic computation (e.g. procedural or physical simulation)
might not offer enough creative flexibility or numerical stability for
the desired effects. Another challenge is generality; most of the prior
methods are dedicated to a specific phenomenon, and users have to
employ a multitude of tools for different effects.

We propose a method that offers controllability and generality for
authoring spatial-temporal repetitions. Based on the observation that
many such repetitions can be intuitively understood as a combination
of coarse scale themes and fine scale details, we devise two main
categories of controls: output constraints at the coarse scales (e.g.
overall shape, orientation, and motion of the output domain), and
input exemplars at the fine scales (e.g. detailed element arrangements
and movements). Given these, our method will then generate the
desired outputs. See Figure 1 for examples.

It is challenging to provide the aforementioned controllability
and generality. In particular, obeying output constraints and
handling numerous details are both difficult problems alone for prior
dynamics simulation methods. To meet these challenges, our method
combines constrained optimization with data driven computation
to satisfy the controls while synthesizing the details. We call this
method dynamic element textures. Our core idea is to extend
the spatial samples in Ma et al. [2011] with the temporal samples
in Wei and Levoy [2000] to produce spatial-temporal samples as
the foundation for representation, analysis, and synthesis. On the
representation side, we use spatial-temporal sample neighborhoods
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analogous to the use of pixel [Efros and Leung 1999] or vertex [Turk
2001] neighborhoods in prior texture representations, so that we
can apply analogous methodology to synthesize dynamic element
details. On the analysis side, we perform spatial-temporal filtering
to decompose a given input exemplar into coarse and fine scale
geometry and motion. On the synthesis side, we provide a solver
that enforces local neighborhood similarity between input and output
(via data-driven computation) while observing additional constraints
such as motion, geometry, topology, and physics (via constrained
optimization).

Our method offers the following advantages: it is easy to use and
requires only concrete output constraints and input exemplars instead
of abstract procedures or parameters; it is general and can be applied
to a variety of phenomena; it is robust and unconditionally stable;
it offers full controllability through constraints and exemplars; and
it can produce both realistic and artistic effects that are difficult to
achieve via prior techniques.

2 Previous Work

A common method to synthesize detailed repetitions is by designing
specialized procedures for specific phenomena, such as traffics
[Sewall et al. 2011], crowds [Narain et al. 2009], and fluid turbulence
[Stam and Fiume 1993; Thürey et al. 2006]. The key advantage
of such methods is their controllability through fine tuning of the
detailed steps and parameters of the procedures. However, they often
do not apply outside their target phenomena and require significant
expertise to understand the algorithms and their parameters. For this
reason, we choose a data-driven approach. Data-driven synthesis
tends to be more general and user friendly, as it is easier to ask
users to provide examples than to understand and tweak specific
algorithms. We discuss below the techniques from which we draw
inspiration, as well as related data-driven techniques addressing
animated content.

Neighborhood-based texture synthesis Early data-driven
methods [Paget and Longstaff 1995; Efros and Leung 1999] focused
on stochastic texture synthesis, as surveyed by Wei et al. [2009].
Most of these methods optimize output texture colors to reproduce
the spatial neighborhoods of pixels in the input exemplar. Latest
methods provide fast synthesis and user control, in particular
conformity to content manually placed by the user [Lefebvre and
Hoppe 2005]. We seek to bring similar benefits for synthesizing
dynamic details in animated 3D content.

Time-varying textures Several approaches modify texture syn-
thesizers to generate animated sequences [Szummer and Picard
1996; Wei and Levoy 2000; Kwatra et al. 2003]. These algorithms
extend spatial neighborhoods in the temporal domain, augmenting
them with colors from previous frames. A similar methodology
allows synthesis of textures flowing along a vector field, correcting
distortions from motion through texture synthesis [Kwatra et al.
2005; Lefebvre and Hoppe 2006; Kwatra et al. 2007]. Schödl
et al. [2000] note that some video sequences exhibit a stochastic
behavior only in time. They detect low-cost transitions between
frames to generate infinitely looping sequences. All these schemes
consider regular neighborhoods of pixels across time and space.

Element-based textures Many natural appearances result from
the composition of similar discrete elements. These basic com-
ponents can be extracted manually or automatically [Ahuja and
Todorovic 2007; Cheng et al. 2010]. Dischler et al. [2002] produce
textures by distributing texture patches with irregular boundaries,
considering co-occurrence statistics. Recent schemes synthesize
distributions of elements by matching irregular neighborhoods of

Symbol Meaning
si Input sample
so Output sample

p(s) Position of sample s
p̂(s, s′) Relative position between s and s′

t(s) Time stamp of sample s
u(s) Concatenated spatial-temporal location of sample s
n(s) Spatial-temporal neighborhood of sample s
I Sample collections of input exemplar
O Sample collections of synthesis output

Table 1: Notations.

elements [Barla et al. 2006; Ijiri et al. 2008; Ma et al. 2011]. This
makes an interesting connection to neighborhood based synthesis,
which we exploit in this work.

Our technique is at the crossroads of time-varying and element-
based techniques: we extend the irregular neighborhoods of Ma et
al. [2011] in the temporal domain and add topological constraints
to address different geometries. This enables a more general
framework: animation is no longer limited to video sequences, and
our method is applicable to particles, threads, and sheets (Figure 1).

Data-driven animation synthesis Several data driven synthesis
methods target specific animated content, such as motion capture
data [Kovar et al. 2002; Pullen and Bregler 2002], crowds [Ju et al.
2010; Li et al. 2012], sequences of meshes [James et al. 2007], and
cloth wrinkles [Wang et al. 2010; Kavan et al. 2011]. While these
techniques offer state-of-the-art results for the specific applications
they address, our technique applies to a wider range of phenomena
and provides more control to the user.

Controllable animation synthesis Control over the result is
especially important for animators: it is often necessary to direct
the animation, for instance, specifying the poses at certain key-
frames. Several techniques for simulation of dynamic effects offer
such controls, including rigid body [Popović et al. 2000], crowd
formation [Kwon et al. 2008], and deformable objects [Barbič et al.
2009]. However, none of the existing methods can handle large
scale controls and small scale details simultaneously. In addition,
non-physics-based effects are preferred under a variety of usage
scenarios [Cho et al. 2007]. This is a key advantage of our data-
driven technique compared to physically based animation.

3 Core Ideas

We use spatial-temporal samples to represent both the geometric
and dynamic aspects as well as to define a sample-based local
neighborhood to characterize textures. These form the basis of
our analysis and synthesis algorithms. Notations are summarized in
Table 1 for easy reference.

3.1 Samples

To handle different element geometries and motions, we use a
sample based representation as inspired by Ma et al. [2011] for
static geometry as well as Müller and Chentanez [2011] for dynamic
motion. The algorithm of Ma et al. [2011] stores with each sample
s its spatial location p(s) as the main information, plus optional
application dependent properties q(s) such as id, color, or texture
coordinates. In our case, since we need to handle dynamic motions,
we also store with each sample a time-stamp t:

u(s) = (p(s), t(s)) (1)

where u(s) indicates the spatial-temporal location of s, a concate-
nation of its spatial position p(s) and time stamp t(s). This simple
representation allows us to handle a variety of objects with different



Figure 2: Elements, samples, and neighborhoods. Top row: elements (gray
shapes) and samples (red points). Bottom row: the corresponding spatial
neighborhoods with samples illustrated in different shapes and dashed lines
indicating topological constraints.

shapes and motions. See Figure 2 for examples.

3.2 Neighborhood

Local neighborhood has shown to be a very simple and effective
representation for textures [Paget and Longstaff 1995; Efros and
Leung 1999]. Here, we define neighborhoods based on the spatial-
temporal samples introduced above.

Representation Our basic idea is for each neighborhood n to
cover nearby spatial-temporal samples considering both static and
dynamic aspects. Specifically, for each element s′ in the spatial-
temporal neighborhood of s, we calculate their relative spatial-
temporal difference as:

û(s′, s) = u(s′)− u(s) (2)

This allows us to define the neighborhood n around s as a collection
of spatial-temporal differentials û(s′, s):

n(s) = {û(s′, s)} (3)

where s′ is within a user-defined spatial-temporal region around s.
(See Figure 3.) Essentially, we express each neighborhood n(s) in
terms of relative differences of each s′ with respect to the center
sample s, therefore discarding the global information and allowing
for neighborhoods in different spaces and times to match.

Distance measure The dissimilarity of two samples’ neighbor-
hoods n(so) and n(si) is measured by our notion of neighborhood
“distance” defined as:

|n(so)− n(si)|2 =
∑

s′o∈n(so)

∣∣û(s′o, so)− û(s′i, si)
∣∣2 (4)

where s′o runs through all samples in n(so), and s′i ∈ n(si) is the
“matching” sample of s′o. We match only s′i and s′o with identical
time differences to si and so. We determine the exact matches via
the Hungarian algorithm [Kuhn 1955] to minimize Equation 4.

Topology constraint Samples belonging to the same element,
such as a thread or sheet as illustrated in Figure 2, have to obey
additional topological constraints during the matching process
described above. Our sheets have a regular 2D topology along
their surface akin to pixels in images (Figure 2). Therefore we forgo
our element-based neighborhood collection and instead we gather a
7× 7 neighborhood guided by this topology [Lefebvre and Hoppe
2005]. Threads are the 1D equivalent of this. The directions, such as
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Figure 3: Spatial-temporal neighborhood shape. Here we visualize
2D spatial (horizontal) temporal (vertical) neighborhoods, with colors
indicating samples at the same time frame and shapes indicating samples
across different time frames. Two orthogonal concepts are illustrated
here: temporal-causal versus temporal-non-causal (top and bottom) and
whole versus compact shape (left and right). We use temporal-causal
neighborhoods (top) for frame-by-frame synthesis and temporal-non-causal
neighborhoods (bottom) for all-frame synthesis. A full neighborhood n(s)

considers all neighboring samples near the central sample s (left), while
our compact neighborhood considers only spatial neighbors and nearby
temporal doppelgangers (right).

left and up, are determined by user-specified orientation fields. These
topological constraints precede the Hungarian algorithm above,
which applies only to sample pairs (s′o, so) without any topological
constraints.

Temporal causality Depending on which portions of the output
already contain known texture values, different neighborhood shapes
may need to be deployed. A key concept is causality. In Wei
and Levoy [2000], specifically, a causal neighborhood is used for
scanline-order synthesis (to cover only those already synthesized
pixels), whereas a non-causal neighborhood is used for full synthesis
(as refinement of an already synthesized output). For dynamic
element textures, we adopt an analogous concept in the temporal
dimension. See Figure 3 for illustrations. A temporal-non-causal
neighborhood is a neighborhood that contains samples in later
frames. We use temporal-causal neighborhoods for synthesizing
output frame-by-frame, and use temporal-non-causal neighborhoods
for optimizing all output frames together when the synthesis is
performed under user constraints.

Compact shape The neighborhood n(s) introduced so far incor-
porates all spatial-temporal samples within a certain distance from a
central sample s as shown in Figure 3 (left). For better efficiency, we
have adopted a more compact neighborhood shape with only spatial
neighbors and 1D temporal trails, as shown in Figure 3 (right), which
reduces computation significantly (from O(r4) to O(r3) in a 3D
spatial + 1D temporal space with circular neighborhood of radius
r). This idea is analogous to the use of 2D slices instead of full
3D neighborhoods for accelerating solid texture synthesis [Dong
et al. 2008]. While results are found adequate with the compact
neighborhood, we leave a more thorough study of where a full
neighborhood is necessary as future work.



input

initialization

frame-by-frame synthesis

all-frame synthesis

search

advection

assignment

extra 
solver 
steps

+

output

Figure 4: Illustration of our synthesis pipeline. Following the convention in Figure 3, colors indicate samples at the same time frames and dashed lines connect
samples of the same elements. The input is on the left while the output is on the right. Depending on the sequencing, the output is initialized with either the first
frame or the whole spatial-temporal volume. Our method then iterates among the search, assignment, and potential extra solver steps.

4 Synthesis

Our basic methodology is inspired by texture optimization [Kwatra
et al. 2005]. Let I be the input exemplar and O the corresponding
synthesis output. We can measure their distance based on local
neighborhoods via the following general energy formulation:

E(O; I) =
∑
so∈O

min
si∈I
|n(so)− n(si)|2 + Θ(O; I) (5)

The goal is to compute an output O that minimizes E(O; I) for
a given input I. In the above equation, the first term measures
the difference between the local neighborhoods n as defined in
Equation 4. Specifically, for each output sample so ∈ O, we
find the corresponding input sample si ∈ I with the most similar
neighborhood, and sum their squared neighborhood differences. The
second term Θ contains application specific constraints.

4.1 Basic Synthesis

Our basic algorithm first initializes the output according to the input
exemplar(s) and output constraints. It then optimizes the output
through iterative search and assignment steps as inspired by Kwatra
et al. [2005], plus potential extra solver steps. The whole process is
visualized in Figure 4. More detailed descriptions are as follows.

Sequencing We can synthesize the output either frame-by-frame
or all the frames together. The former is easier to implement and
has smaller memory footprint, while the latter is necessary to handle
spatial-temporal constraints. All the subsequent steps depend on this
choice of sequencing, as well as the choice of neighborhood shape
as depicted in Figure 3.

Initialization For frame-by-frame synthesis, we initialize the first
frame via the patch-based approach in Ma et al. [2011]. Each
subsequent frame is initialized from the previous frame via advection
following the sample velocities.

For all-frame synthesis, we extend the patch-based initialization in
Ma et al. [2011] to include the time dimension as well. Specifically,
we divide the input exemplar into spatial-temporal patches and then
randomly copy these patches into the output domain. We set the
patch size to be identical to the user selected neighborhood size
(Section 3.2). To avoid partial/broken objects, we always copy
complete elements.

When constraints are present, we perform this patch copy start-
ing from the most constrained to the least constrained regions.
Specifically, we first identify the most constrained regions in the
output, find the input patches that best satisfy these constraints, and

move the constrained elements to the use specified positions for
hard constraints. We repeat the same process for gradually less
constrained regions while ensuring patch boundary compatibility as
in traditional patch based synthesis. Since we do not add or remove
elements during the subsequent optimization, we need to ensure
that all frames are populated with the same number of elements. In
addition, when copying patches, we take into account user controls,
such as aligning patches with local orientations as well as preferring
input patches with similar boundary conditions to the output region.

Search step During the search step, we find, for each output
sample so, the best matching input sample si with the most similar
neighborhood (according to Equation 4). This search is conducted
by exhaustively examining every input sample if the exemplar is
sufficiently small, or further accelerated by adopting a k-coherence
search [Tong et al. 2002] for constant time computation.

Assignment step Here we determine the output sample positions
{p(so)}so∈O to minimize Equation 5. At the beginning of the
assignment step, we have multiple input neighborhoods {n(s′i)}
overlapping every output sample so, where n(s′i) is the matching
input neighborhood for output sample s′o as determined in the search
step, and s′o is sufficiently close to so so that the spatial extent of
n(s′i) covers so. Each such n(s′i) provides a prediction p̂(so, s

′
o)

for the relative position between so and s′o:

p̂(so, s
′
o) = p(si)− p(s′i) (6)

where si,s′i indicates the matching input sample for so,s′o respective-
ly as described in the neighborhood metric (Equation 4). (Each such
prediction is visualized as an arrow in Figure 4.) Note that since n
covers neighbors both spatially and temporally, our method above
can assign positions considering spatial arrangements and temporal
motions. We extract from Equation 5 the p(so) variables for all
output samples so ∈ O into the following energy function:

Ep({p(so)}) =
∑
so∈O

∑
s′o∈n(so)

∣∣(p(so)− p(s′o))− p̂(so, s
′
o)
∣∣2
(7)

Equation 7 is a quadratic function of {p(so)} and can be minimized
via least squares, i.e. solving a positive definite sparse linear system.

Parallelization The search step above can be trivially parallelized.
To parallelize the assignment step, we fix p(s′o) (considering
as constants rather than variables as inspired by Lefebvre and
Hoppe [2005]) in Equation 7, so that p(so) can be solved by
examining only a small set of local neighbors.



(a) pure synthesis (b) hybrid solver

Figure 5: Comparison between pure synthesis and hybrid solver with a
physical sub-step. Notice the higher amount of collisions near the boundary
obstacle for (a) versus (b). By detecting and resolving particle collisions in
the advection step, our hybrid solver can reduce physical artifacts compared
to pure data driven synthesis with global flow. Both of the results are obtained
using the input exemplar shown in Figure 8a.

Extra energy terms We can incorporate additional controls for
various application specific effects such as control maps [Lu et al.
2007; Wei et al. 2008], orientation fields, boundary conditions,
domain shapes, and constrained selections. These can be achieved
through additional energy terms Θ in Equation 5 analogous to how
Ma et al. [2011] handled static elements.

Extra solver steps Additional solver steps can be incorporated
depending on particular application needs. One possibility is
to add a physical simulation step to help resolve collisions and
interpenetrations, making our whole pipeline a hybrid between data
driven and physical simulation. We have found this hybrid approach
helpful for more constrained situations such as output boundary
conditions not present in the input exemplars, as demonstrated in
Figure 5. However, we wish to emphasize that all these extra steps
are optional and our basic steps are already quite adequate. We have
not applied a physical sub-step to our other results.

4.2 Smooth Synthesis

Since the input exemplar provides only a finite discrete sampling
of the entire neighborhood state space, the best matching input
neighborhoods during two successive search steps may change
significantly. Furthermore, even when the best matching input
neighborhoods remain the same, the number of matched neighbor
pairs may change during the assignment step. These may cause our
basic algorithm in Section 4.1 to produce temporal jitters if the input
exemplar is too small to adequately sample the state space. Note
that such jittering also exists in color textures, but human perception
is more sensitive to motion jittering than color jittering.

We alleviate these issues by introducing smoothness into every major
step of our basic algorithm, including both the search and assignment
steps as well as the neighborhood distance measure.

Distance measure Inspired by [Efros and Leung 1999], we use a
Gaussian falloff to smooth the boundary of each neighborhood:

|n(so)− n(si)|2 (8)

=
∑

s′o∈n(so)

κ(s′o, so) + κ(s′i, si)

2

∣∣û(s′o, so)− û(s′i, si)
∣∣2
(9)

where κ(s′, s) is a Gaussian kernel with user specified parameters
σp and σt for spatial and temporal domain extents:

κ(s′, s) = exp
(
− (p(s′)− p(s))2

σp
− (t(s′)− t(s))2

σt

)
(10)

Intuitively, this smooth falloff reduces the impacts of samples far
from the neighborhood centers and alleviates the temporal jittering
when the number of neighbors changes drastically between two
consecutive frames.

Search step For each output neighborhood n(so) we find the
nearest N input neighborhoods {sij}j=0:N−1 instead of just one as
in our basic algorithm.

Assignment step We generalize Equation 6 to consider these
N > 1 best matching input neighborhoods as follows:

p̂(so, s
′
o) =

1∑
j ωj

∑
j

ωj · (p(sij)− p(s′ij)) (11)

where the interpolation weight ωj is determined based on the
neighborhood distances:

ωj = 1.0− |n(so)− n(sij)|2∑
k |n(so)− n(sik)|2

(12)

In our current implementation we use N = 2, as our experiments
indicate that this already smoothes out most noticeable jittering
effects.

4.3 Graph Synthesis

Our algorithm described so far relies on inputs with sufficient spatial
and temporal extents in order to produce good results. However,
this might not be always feasible or desirable; captured data may
have inherent limitations on the spatial-temporal extents, and manual
preparations can quickly become tedious for large inputs.

To address this issue, we propose to enrich the input exemplars
through neighborhood graph, as inspired by those animation-from-
still methods [Wang et al. 2006; Xu et al. 2008]. The graph consists
of neighborhoods as graph nodes and edges connecting nodes with
weights proportional to the nodal neighborhood distance, as defined
in Equation 4. Thus, walking along a low-weight path can provide a
plausible animation, even for inputs with limited temporal extents
(including static inputs with a single frame).

Graph construction Given a set of sample neighborhoods
{n(s)}, we build a graph out of these neighborhoods as nodes.
The weight of the edge connecting each pair of nodes is computed
via our neighborhood distance measure. In particular, the lower the
weight is, the more similar the two neighborhoods are. We denote
the largest weight of the edge in the graph as δ, which is used as a
normalization factor below.

Path computation For each node n(sa), we first identify its
immediate neighbor node n(sb) with the largest edge weight from
n(sa). We then determine a motion path between these two nodes
{n(s0),n(s1), . . . ,n(sn)}, which satisfies s0 = sa, sn = sb and
minimizes the following energy function:

n−1∑
i=0

|n(si+1)− n(si)|2

δ
+ α

(
1−

∑
0≤i,j≤n |n(si)− n(sj)|2

δ · n · (n+ 1)

)
(13)

where α is a user specified constant weight (α = 0.5 worked well
in all our results). Intuitively, the first term in Equation 13 ensures
a smooth transition between n(sa) and n(sb), while the second
term favors larger node diversity in the path. We solve the discrete
optimization problem in Equation 13 using simulated annealing.
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Figure 6: Spatial-temporal filtering. Shown here are different filter
kernel sizes and shapes. The filter kernels are colored in yellow, with the
sample visualization following the convention of Figure 3. Left: temporally
elongated. Middle: spatial-temporal isotropic. Right: spatially elongated.
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Figure 7: Adaptive filter sizes near boundaries. Starting with the
isotropic filter in Figure 6 middle, the filter needs to shrink for samples
near boundaries, in the spatial (left), temporal (middle), or both (right)
directions.

For each motion path, we use the morphable model in [Ju et al.
2010] to generate smooth temporal transitions between nodes, with
blending weights determined by considering the path nodes as fourth-
order NURBS data points.

5 Analysis

Our synthesis method relies on inputs that contain only details
without global structures. However, creating such pure details in
isolation can be difficult, as certain phenomena can be easier to
obtain alongside non-trivial global structures (e.g. interesting thread
vibrations with certain hair styles). Therefore we provide an analysis
tool to decompose general inputs into local and global motions and
geometries.

Our basic idea is to perform a low pass filtering of spatial-temporal
sample positions of a given input I to obtain the coarse spatial-
temporal sample positions C, with the details D computed as their
differenceD = I−C. C directly provides a coarse sample geometry
in a per time frame basis, and the coarse motion is computed as
the difference of corresponding samples at adjacent time frames
of C. Since both filtering and differencing are linear operations,
filtering positions followed by differencing for velocity is the same
as differencing for velocity first followed by filtering.

The size and shape of the filter kernel can be customized according
to particular application needs and semantics (see Figure 6 for
visualization). Let us take group motions as an example. If we
assume the global flow changes slowly over time, we can set the
kernels to have large temporal duration. However, if the flow has
higher temporal variation, we can set a shorter kernel size in the
temporal direction.

To avoid bias, the filter kernel should maintain symmetry both
spatially and temporally; otherwise, the filtered spatial-temporal
location may be biased/shifted towards another spatial or temporal
direction. This implies that for samples near spatial or temporal
domain boundaries, the filter size will need to shrink accordingly.
See Figure 7 for an illustration.

6 Applications

We apply our approach to a variety of phenomena. Here, for the
purpose of presentation we organize the applications according to the
topological degree of constraints, including particles (Section 6.1),

Category
topology

Figure
neighborhood size

σpconstraint spatial temporal

particles none

8e 2.0 1 1.0

8f 2.25 1 1.0

8g 1.75 1 1.0

8h 1.75 1 3.0

fish none

9b 2.0 10 ∞
9d 2.5 10 ∞
9f 2.0 10 ∞

11b 2.0 10 3.0

spaghetti 1D 10 3.0 7 ∞
papers 2D 13 3.0 10 ∞

Table 2: Parameter settings for our results. The spatial neighborhood size
is measured with respect to the nearest distance between two samples in the
exemplar. The temporal neighborhood size counts the number of succussive
frames in each spatial-temporal neighborhood. The spatial smooth falloff
range σp is measured with respect to the spatial neighborhood size, while no
temporal smooth falloff has been introduced for all the results (i.e. σt = ∞).

threads (Section 6.2), and sheets (Section 6.3). Orthogonal to all
these categories, our approach handles different input exemplars
that are realistic or artistic (e.g. Figure 10), dynamic or static (e.g.
Figure 11 & Figure 12), as well as output constraints such as shapes,
boundaries (e.g. Figure 8), motions (e.g. Figure 9), and physics (e.g.
Figure 5). We also present our analysis method for decomposition
and recombination (e.g. Figure 14). To our knowledge, even though
techniques exist for specific phenomena, none of them are capable
of handling all such general and diverse effects.

Parameters We have found that our algorithm behaves well with
a wide range of parameters. For example, the spatial neighborhood
size is set to approximately cover the 1-ring neighborhood of each
sample, while the temporal content of the neighborhood just needs
to be comparable to the length of a single textural behavior (such as
a fish transiting from one group to another in Figure 9e). We have
listed the parameters for each demo in Table 2.

6.1 Particles

This category includes individual elements or agents freely moving
around each other without any topological constraints, such as
particles or herd motions.

We start with the simplest case of isotropic elements, serving as a
didactic demo and a base-line test for our method, in line with prior
texturing algorithms [Efros and Leung 1999]. As shown in Figure 8,
we can use different input exemplars to fully control and produce
different output effects, some of which contain artistic patterns and
are beyond traditional procedural or simulation-based methods. We
can also use different output constraints including initial domain
shape, boundary obstacles, and global flow field.

Phenomena with more complex spatial-temporal structures can also
be easily handled by our method. In Figure 9, we show herd motion
consisting of individual fish with relatively complex geometries
and dynamics. With our approach, users can produce a variety of
effects by simply providing proper exemplars, such as both spatially
and temporally homogeneous animation (case 9a), heterogeneous
motion with some agents behaving differently from others (case 9c),
or spatially heterogeneous arrangements with agents of different
sizes (case 9e). The only output constraint for all these versatile
cases is a simple cubic output domain shape.

6.2 Threads

This category includes elongated elements such as noodles, hairs,
and branches. Such elongated elements need multiple samples per
element for accurate characterization, and samples corresponding to



(a) Poisson (b) artistic

(c) jittered (d) regular (e) stochastic output (f) artistic output (g) jittered output (h) regular output

Figure 8: Synthesis of particles. Out method can synthesize animation of particles with various local distributions, including stochastic (a), artistic (b), as
well as regular (d) arrangements. Input (b) is manual art while the rest procedurally generated: (a) Poisson disk, (c) jittered grid, (d) hexagonal grid.

(a) homogeneous (b) homogeneous output

(c) temporally-hetero. (d) temporally-heterogeneous output

(e) spatially-hetero. (f) spatially-heterogeneous output

Figure 9: Synthesis of fish. Here we manually create three different input
exemplars: a homogeneous distribution (a), a temporally heterogeneous
behavior with some fishes rapidly transiting between groups (c), and a
spatially heterogeneous distribution of fishes with different sizes (e).

the same element have to obey additional 1D constraints.

In Figure 10, we apply our method for dynamic spaghetti/noodle
threads. It is very difficult to control the exact appearance
and behavior of such a complex phenomenon through physical
simulation [Soares et al. 2012] at either the global or the local scale,
such as the overall shape of the noodle bundle or the detailed motion
of each individual thread.

Our system allows direct control of both scales through output
constraints and input exemplars. In Figure 10, users first specify
the motion for a single output noodle via simulation or manual
manipulation and simply duplicate the motion to all the other output
noodles to get the coarse control. Then they can use our system to
add details from the input exemplar, introduce natural variations,

(a) coarse output specification

(b) realistic in (c) realistic output

(d) artistic in (e) artistic output

Figure 10: Synthesis of spaghetti. With a coarse output motion (a) and
different detailed input exemplars, (b) for realistic effects and (d) for artistic
effects (“jagged” noodles for the 40th SIGGRAPH), our method can produce
corresponding results with different effects (c) (e).

and/or achieve artistic effects.

6.3 Sheets

This category includes flat elements such as papers and clothes.
These elements need multiple samples per element to accurately



(a) captured input (b) synthesis output

Figure 11: Synthesis from captured video input.

characterize geometries and motions both within and across ele-
ments, including the 2D topological constraints. Adding dynamic
details for sheets via data driven synthesis has recently attracted a
lot of attention [Wang et al. 2011; Kavan et al. 2011]. However,
most of these methods aim to reproduce physical realism with more
efficient computations. With different input exemplars, our approach
produces not only physically plausible motions but also artistic
effects as shown in Figure 13. Here we use the coarse motion in
Figure 13c as the only output constraint.

6.4 Captured Input

Our method can be applied to not only manually or computationally
prepared inputs as demonstrated in our earlier demos, but also
captured inputs, which can significantly save user preparation time,
analogous to how prior image texture synthesis methods can produce
outputs directly from images snapped from the web [Efros and
Leung 1999].

In Figure 11, we demonstrate a case where the input is a captured
video of swimming fish and the output contains synthetic models
with spatial distributions and temporal motions computed by our
method. This case is inspired by prior motion-capture like scenarios
(e.g. [Ju et al. 2010]), where synthetic outputs are computed by data
captured inputs. Here, the users only need to prepare polygonal
model for the fish, with the spatial distributions and temporal
motions extracted from the input.

In Figure 12, we demonstrated a case where the input can be simply
captured images. This can be a quite handy usage scenario, as users
only need to shoot a few static images instead of a whole video
of a real scene. They can then use our algorithm as described in
Section 4.3 to produce dynamic outputs from static inputs. In this
particular example, the input consists of a single photo of a willow
tree (with branch structures manually traced by a user) and the output
contains a dynamic motion with polygonal models.

6.5 Analysis

We can apply our analysis algorithm (Section 5) for decomposing
an input into coarse and fine spatial-temporal structures as well as
re-combining different coarse and fine structures.

Decomposition We apply our analysis method to decompose an
input dynamic geometry into the corresponding coarse and fine
scales. Since the notion of coarse and fine can be subjective (similar
to image textons with hierarchical structures), we let users decide
the proper neighborhood size for the decomposition. Figure 14
demonstrates our decomposition results for dynamic hairs.

(a) captured input (b) synthesis output

Figure 12: Synthesis from captured image input.

Recombination We can also recombine the coarse motion of one
sequence with the details of another. See Figure 14 for examples.
Here the extracted coarse motion is used to guide the synthesis of
fine-scale features and acts like the control map of the origin input,
similar to the filtered source image in image analogies [Hertzmann
et al. 2001].

7 Limitations and Future Work

Our method handles only textural motions and geometries with
sufficiently small and local scales. Take the fish demo in Figure 9 as
a concrete example. If the relative motions between different fish are
sufficiently large relative to their aggregate speed, our method may
produce output with some fish swimming backwards. A potential
remedy is to add additional constraints beyond those described in
Section 4.1.

Our current core metric uses simple spatial-temporal samples. As
demonstrated in other domains such as crowds [Guy et al. 2012],
more domain-specific metrics may be needed for accurate evaluation.
A potential direction is to incorporate such analysis models into
our synthesis framework to produce outputs that more faithfully
reproduce input behaviors.

Our current implementation for constrained synthesis (Section 4.1)
requires the storage of the entire output spatial-temporal volumes.
Potential computation and storage savings can be achieved through
order-independent synthesis [Lefebvre and Hoppe 2005].

We have applied our method to particles, threads, and sheets. A
potential interesting direction is to explore other applications and
representations such as volumetric solids.

A crucial issue for any data driven synthesis is the preparation of
input exemplars. This is usually quite easy for image textures but
can be more difficult for dynamic elements. We have demonstrated
the possibility of using various input methods, including simulation,
manual art, and captured data to achieve different desired output
effects. We believe more can be done in this direction, especially
in combining vision/machine-learning methods with a good UI for
human intervention. Similarly, we believe our algorithm would
become much more accessible by improving user interaction for
contact creation in the spirit of Kazi et al. [2012].
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(a) realistic input

(b) artistic input (c) coarse motion (d) realistic output (e) artistic output

Figure 13: Synthesis of deformable paper scraps. Given a coarse motion (c), we produce outputs with different flavors through different inputs, including
physical simulation (a) and manual art (b).
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Figure 14: Decomposition and recombination of hair strands. (Top row, analysis for decomposition:) Given an input (a), our method extracts both the
coarse and fine scale spatial-temporal textures depending on the user specified neighborhood sizes, as in (c)+(d)\(e)+(f) for smaller\larger neighborhood
sizes. All details are visualized via adding on to an initial straight bundle in (b). Note that (e) is smoother than (c) while (f) is more detailed than (d). (Bottom
row, re-editing from our analysis results:) We replace the original details in (a) by different input details in (g) and (i) to produce novel outputs in (h) and (j).
Conversely, we can also apply analyzed detail motion (f) to a novel coarse input (k) to produce (l).
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