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Figure 1: Capturing a five-strand Dutch braid. We capture the braided hairstyle (a) using a Kinect sensor and obtain an input mesh with a local 3D
orientation for each vertex (b). Based on the information provided by the example patches in a database, we extract the centerlines (c) of the braid structure to
synthesize final output strands (d). (e) and (f) show the input reference photo and our output strands from another viewpoint.

Abstract

From fishtail to princess braids, these intricately woven structures
define an important and popular class of hairstyle, frequently used
for digital characters in computer graphics. In addition to the
challenges created by the infinite range of styles, existing modeling
and capture techniques are particularly constrained by the geometric
and topological complexities. We propose a data-driven method
to automatically reconstruct braided hairstyles from input data
obtained from a single consumer RGB-D camera. Our approach
covers the large variation of repetitive braid structures using a
family of compact procedural braid models. From these models,
we produce a database of braid patches and use a robust random
sampling approach for data fitting. We then recover the input braid
structures using a multi-label optimization algorithm and synthesize
the intertwining hair strands of the braids. We demonstrate that a
minimal capture equipment is sufficient to effectively capture a wide
range of complex braids with distinct shapes and structures.
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1 Introduction

Whether as a fashion statement or an indicator of social status,
braided hairstyles for both men and women have remained prevalent
in many cultures for centuries. It is no surprise that digital
storytellers frequently use characters with braids, ranging from
casual ones to meticulously styled updos. In both film and game
production, the hairstyles of digital humans need to be carefully
designed as they often reflect a unique personality of the character.
Typically, reference photographs or 3D scans of real actors are used
as a starting point for the digitization. While sophisticated hair
modeling tools [Choe and Ko 2005; Yuksel et al. 2009] have been
introduced to improve the workflow of digital artists, significant
effort is still required to create digital hair models that accurately
match the input references. In feature films, modeling the hairstyle
of a single character can take up to several weeks for an artist.

To facilitate the digitization of complex hair models, important
advancements in 3D hair capture [Paris et al. 2008; Luo et al. 2013;
Hu et al. 2014] have recently emerged to further reduce the manual
effort of digital artists. Even though sophisticated hardware is
necessary, these techniques can capture a wide spectrum of real
world hairstyles using geometric and physics-driven priors for hair
structural analysis. However, these structural analyses become
problematic for constrained hairstyles such as braids since their
priors cannot properly model the intertwined topologies of braids.

A great variety of complex braids can be generated by repeatedly
applying several basic rules [Coefield 2013]. For instance, the most
common basic braids with 3 strands (Figure 2a are generated by
repeatedly crossing the current middle strand under the outside one
(left or right) in an interleaved fashion. Other braid styles extend the
basic one by varying the number of strands, crossing over or under,
or merging extra hair strands after each crossing. More complex
braids include the Princess Anne style (Figure 14, bottom). These
basic rules are generalized and systematically studied in braid theory
[Artin 1947] as the generators for a braid group Bn with n strands.
Although in theory, an infinite number of braids exist in Bn, braided
hairstyles in daily life are typically limited to a couple of styles where
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(a) basic braid

(b) Five-strand Dutch braid

Figure 2: Making braids. Top: a three-strand basic braid; bottom: a
five-strand Dutch braid for Figure 1. Individual steps of making each braid
style are shown from left to right.

each strand is symmetric to another for simplicity and aesthetics.

In this paper, we develop the first 3D hair reconstruction framework
that enables the acquisition of wide range of different braided
hairstyles. In addition to greatly increasing the space of capturable
hair variation, our system requires only a commodity depth sensor as
input, producing results comparable to existing high-end hair capture
techniques. Inspired by the simplistic generative rules of braids in
both theory and practice, we use a family of compact procedural
models based on sinusoidal functions to represent common braided
hairstyles. These procedural models can be used to fit the braid
structures to the input data and resolve the structural ambiguities
caused by occlusion. We show that our system can faithfully recover
complex intertwined patterns and generate structurally plausible
braided hair models. We adopt a patch-based fitting algorithm based
on random sampling and perform structure analysis to connect them
into consistent braids. Finally, we synthesize output strands in the
braid structures and combine with the remaining hair by diffusing
the 3D orientation fields. Since our system only requires a consumer
level depth sensor such as Microsoft’s Kinect, we can greatly reduce
the cost of the acquisition hardware as compared to previous multi-
view stereo systems (e.g. [Luo et al. 2013; Hu et al. 2014]).

Contributions. In summary, our contributions are:

• A novel hair reconstruction framework for braided hairstyles
capable of extracting complex intertwined structures;

• A family of compact procedural braid models that represent a
wide range of common braided hairstyles.

• A robust patch-based braid fitting and analysis approach that
addresses flexible braid patterns.

2 Previous Work

Braid theory. Braid theory [Artin 1947] is an abstract geometric
theory that studies the topology of braids as mathematical groups.
In an n-strand braid group Bn, each braid can be represented by
a braid word concatenating the generators {�i} and their inverse
{��1

i }. There are n � 1 generators in Bn in total. For example,
the common 3-strand basic braid can be represented as �1�

�1
2 ; the

�1 �3 ��1
2 �1 �3 ��1

2 �1 �2 ��1
3 �1 �2 ��1

3

(a) 4-strand basic braid (b) 4-strand fishtail

Figure 3: Representing common braid styles by braid words in braid theory.
As shown above, the 4-strand basic braid can be written as �1�3�

�1
2 and

4-strand fishtail as �1�2�
�1
3 .

4-strand Fishtail can be represented as �1�2�
�1
3 (Figure 3). These

representations can be generalized to n-strand braids: n-strand basic
braids as ⇧i odd�i⇧i even�

�1
i and fishtails as ⇧in

2
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2
�
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a similar spirit, our procedural braid models use periodic sinusoidal
functions to model the braid strands as they are woven down.

Hair modeling. A long line of research has been devoted to hair
modeling as surveyed in [Ward et al. 2007]. Pure manual editing
remains a popular choice for experienced artists to create hair models
from scratch for maximum flexibility. To avoid the daunting task of
manipulating individual hair fibers, these systems usually provide
some kinds of geometric proxy, such as guide strands or polygonal
surfaces for more intuitive design and manipulation of hair [Choe
and Ko 2005; Fu et al. 2007; Wither et al. 2007; Yuksel et al.
2009; Ghoniem and Museth 2013]. Further realism can be achieved
through physical simulation as a post-process [Selle et al. 2008;
Derouet-Jourdan et al. 2013]. While it is possible to manually
create braided hairstyles from scratch as demonstrated in [Yuksel
et al. 2009], complex and realistic ones are very difficult and time
consuming to produce (often requiring up to several weeks for a
skilled artist).

Hair capture. To reduce the amount of manual labor required,
a common approach is to directly capture real hairstyles and
reconstruct 3D hair models [Wei et al. 2005; Paris et al. 2008;
Jakob et al. 2009; Herrera et al. 2012; Luo et al. 2012; Luo et al.
2013; Echevarria et al. 2014; Hu et al. 2014]. One well-established
pipeline consists of first capturing the raw hair geometry through
passive or active stereo techniques, then computing the orientation
fields, and finally producing the hair strands following the geometry
and input orientation field[Luo et al. 2012; Luo et al. 2013; Hu et al.
2014]. However, these approaches are not designed for constrained
hairstyles, and typically fail on braided hairstyles, producing wrong
hair strand connections during the reconstruction.

There are also a number of hybrid approaches in existence that
attempt to combine the flexibility and robustness of manual modeling
with the accuracy and efficiency of capturing techniques. For
example, the methods by [Chai et al. 2012; Chai et al. 2013; Yu
et al. 2014] allow the users to manually sketch over input images
and/or videos to guide the modeling and editing process. However,
as pointed out in [Yu et al. 2014], capturing and modeling braids
remain a major challenge, especially for the more complex structures.
Even manual sketching techniques over captured 3D data have had
limited success in reconstructing constrained hairstyles and only
the digitization of very simple ponytails has been demonstrated [Hu
et al. 2014].

Structure-aware shape processing. Our proposed technique is
related to existing structure-aware shape processing methods used
for modeling man-made objects. A survey can be found in [Mitra
et al. 2014]. By leveraging prior knowledge from existing databases,
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Figure 4: Overview of our system pipeline. More detailed descriptions are in Section 3.

different approaches have been proposed to analyze and reconstruct
indoor scenes [Nan et al. 2012; Shao et al. 2012; Kim et al. 2012],
component-based models [Li et al. 2011; Shen et al. 2012], and
dense foliage [Bradley et al. 2013]. Compared to prior methods
[Li et al. 2010; Huang et al. 2013] that recover 1D structures from
point cloud data, our approach can handle multiple interleaved 1D
structures such as braids.

3 Overview

The overview of our pipeline is shown in Figure 4. Our input
is a point cloud with normals and local hair orientations at each
point for the captured hairstyle. The point cloud can be derived
from the vertices of a mesh reconstructed by a consumer depth
camera [Newcombe et al. 2011] or directly from multi-view
stereo [Furukawa and Ponce 2010]. The local 3D orientation for
each point (Figure 4d) is computed by maximizing the consistency of
projected directions across a set of 2D orientation maps (Figure 4c)
as in [Luo et al. 2013]. We manually remove the non-hair part from
the point cloud (Figure 4e). This is the only mandatory manual step
of our entire pipeline.

We generate a database of a variety of example patches via
procedural braid models (Figure 4f, Section 4). Each patch is a
group of surface tubes with their centerlines. We then adopt a fitting
method based on random sampling to align the input point cloud
with the patches in the database and derivate a set of candidate
examples matching the braided part (Figure 4g, Section 5). To
speed up computation, users can optionally perform the following
two types of manual input: (1) choosing a braid example from the
database based on visual observation, and (2) providing a rough
initial scale which narrows the search range.

Next, we compute the optimal subset of the candidate patches
to disjointly cover the input braid via multi-label optimization
(Figure 4h), and extract the structure of the braided part as the
connected centerlines of the covering braid patches (Figure 4i,
Section 6). Finally, we follow the recovered braid structure with
the rest of the unbraided hair region to synthesize the output strands
guided by a diffused 3D orientation field (Figure 4j, Section 7).

4 Procedural Model

Inspired by the hair braiding process and braid theory, we use a
few intertwining centerlines to represent the braid structures. These

(a) basic braid: centerlines and gradually expanding patches

(b) four-strand braid (c) five-strand dutch braid (d) fishtail braid

Figure 5: Database preparation. (a) shows the centerlines of a three-strand
braid (left), two intermediate results of the patch expanding process (middle
two), and the final expanded patch (right). (b), (c) and (d) show the expanded
patches for a four-strand braid, a five-strand dutch braid and a fishtail braid
respectively.

centerlines are symmetric to each other and have repeating patterns
that can be characterized by periodic sinusoidal functions. Basic
braids (Figure 2a) can be described by three centerlines {Li, i =

0, 1, 2} in its natural frame as follows:

L0 : x = a sin (t) , y = t, z = b sin (2t)

L1 : x = a sin (t+ 2⇡/3) , y = t, z = b sin (2 (t+ 2⇡/3))

L2 : x = a sin (t+ 4⇡/3) , y = t, z = b sin (2 (t+ 4⇡/3))

(1)

where the y is the braiding direction, and a and b are two constants
that determine the shape of the braid. Other braids can be similarly
modeled according to how the strands are woven. We provide a



few more procedural braid models as shown in Appendix A.1. Note
that the procedural forms are by no means exhaustive: users can
provide additional parametric forms either procedurally (as above)
or manually (e.g. sketching a few curves via 3D authoring tools).

In order to model the strand thickness in real braids, we augment the
procedural model by expanding the centerlines to tubes. To compute
the proper radius of these tubes, we expand an initially small radius
until inter-tube penetrations occur.

We use each procedural model to generate a segment of the target
braid as an example patch Pe and collect them into a single database
D (Figure 5). Each patch in the database is a set of helical tubes
with local orientation defined at each vertex vi 2 Pe. The vertex
orientation is defined to be along the direction of the centerline.

5 Patch Fitting

Given the input geometry of the captured hair, our goal is then
to identify the local braid structure of the hairstyle by fitting
braid patches from the database to the point cloud. There are
two major challenges we need to address here. First, almost all
braided hairstyles in real life exhibit rich variations in terms of type,
orientation, and size. For example, braids can have different numbers
of strands, and the orientation and the size of each knot can change
along the braids. Second, the input geometry is usually very noisy
and largely occluded due to hair and body contacts.

We first align the input point cloud C with each braid patch in
the database D to collect a few candidate matches using a fitting
approach based on random sampling similar to [Bradley et al. 2013;
Hu et al. 2014]. Specifically, for each example patch Pe 2 D,
we apply the fitting algorithm N times, each time starting from a
random initial position, orientation, and scale for the patch. The
initial position of the example patch is determined by randomly
sampling a point on the captured surface, and the initial orientation
of the patch is computed from a randomly normalized quaternion.
The initial scale is computed by randomly scaling between 0.9 ⇠ 1.1

of an estimated scale, which is obtained by manually scaling and
matching the braid patches to the braids in the input point cloud.
Here, we use a simple interactive tool by drawing three lines on
the mesh surface to indicate the x, y, z scales. Note that since we
adopt a strategy based on random sampling, we only need a roughly
estimated scale for our fitting algorithm to work and this has to be
done only once for a given example patch. We found that satisfactory
results are obtained for N = 100 in all our examples.

Next, we compute the optimal transformation T to align the scaled
patch Pe with C via Iterative Closest Point (ICP) method [Besl and
McKay 1992]. To take into account the variations of braids in the
input hairstyle and to achieve better fitness, we adopt both, a rigid
and non-rigid ICP [Li et al. 2009] approach to deform Pe. (An
example comparison is shown in Figure 6.) The fitting error is
computed as:

E

�
C,Pf

�

=

X

i

|p(vc,i)� p(v̂e,i)|2 + ↵ |o(vc,i)� o(v̂e,i)|2 (2)

where p and o indicate the position and orientation of the corre-
sponding point; Pf = T(Pe) the fitted patch; v̂e,i the transformed
position of the vertex in Pf with closest point vc,i 2 C, and ↵

a constant weight which is fixed to be 100 for all of our results.
Empirically, we have found that good results can be obtained with
30 iterations of rigid ICP followed by 30 iterations of non-rigid ICP.

Note that the tail of the braid are usually tapered and can cause large
errors when fitting the braid patches. To faithfully fit the tail of

(a) (b) (c)

Figure 6: Comparison between fitting with rigid ICP and non-rigid ICP.
Here we show (a) input mesh and the fitted patches with rigid ICP and
non-rigid ICP in (b) and (c) respectively.

a braid, we also introduce a tail patch for each example patch in
the database. Each tail patch is automatically created by linearly
tapering the example patch towards the end such that the width and
the thickness of the tubes are halved compared to the beginning
along the y-axis. See Figure 4f for a concrete example.

6 Structure Analysis

Our goal in this section is to select the optimal set of fitted patches
from the candidate set and extract the coherent braid structure of the
input hairstyle. The process is visualized in Figure 7.

The patch fitting step (Section 5) produces a set of fitted patches
{Pf}. Each fitted patch covers a subset of points {vc} in the input
point cloud C if vc is within a distance threshold to some vertex
v̂e 2 Pf . We collect all the vertices {vc} covered by at least one
fitted patch Pf , and consider them as the braided part Cb of C,
whose structure can be analyzed by the procedural braid models
in the database. Since {Pf} may be redundant and overlap with
each other, one vc can be covered by multiple fitted patches (see
Figure 7b). We need to select a subset of the fitted patches so that
we can connect them together to form a complete and clean structure
for the braided part.

We formulate the structure analysis task as a multi-label problem.
Specifically, for each point vi 2 Cb, we choose a single label li
which corresponds to a fitted patch Pf,i by minimizing the following
energy function:

E

�
Cb, {li}

�
=

X

i

Ed

�
vi, li

�
+

X

i,j2N(i)

Es

�
vi, vj , li, lj

�
(3)

The first term in Equation 3 is a data term to ensure that each point
vi is assigned to a label such that it is covered by the corresponding
fitted patch Pf,i:

Ed

�
vi, li

�
=

(
E

�
vi,Pf,i

�
if Pf,i covers vi

100 otherwise

(4)

where E
�
vi,Pf,i

�
is the fitting error computed based on Equation 2.

We also ensure that a sufficiently large penalty factor is used (100).
The second term in Equation 3 is a smoothness term that tries to
assign the same label to vertices that are within a distance threshold
and have similar local orientations:

Es

�
vi, vj , li, lj

�
=

(
0 if li = lj

100 otherwise

(5)
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Figure 7: Illustration of our structure analysis algorithm. Here we show
(a) input mesh; (b) candidate patches collected during the fitting stage; (c)
colorized visualization of labeling result on input mesh; (d) patches selected
by the labeling step; (e) centerlines of the selected patches; (f) connected
centerlines; (g) surface expanded from the connected centerlines; (h) fitted
surface after non-rigid ICP.

The energy function in Equation 3 can be efficiently minimized
using a graph-cuts algorithm [Delong et al. 2012]. See Figure 7c for
a color visualization of the labeling result on the input mesh.

Based on the labeling result, we can select an optimal subset of fitted
patches {Pf} whose corresponding labels have been assigned to
certain points in Cb (Figure 7d). Now we need to connect different
sets of centerlines for adjacent patches to generate a complete braid
structure. We pose this task as an assignment problem. Specifically,
we consider all possible matching combinations of the centerlines
for every two adjacent patches. For each possible combination, we
compute an assignment cost as the average distance between the
corresponding points in the overlapping regions of all the combined
pairs of centerlines. The overlapping region is defined to be the
points on one centerline within a distance threshold from the other
centerline. If the overlapping region for any pair of centerlines has
less than two points, the assignment cost is infinite since there is
insufficient overlap. We use the Hungarian algorithm [Kuhn 1955]
to compute the optimal assignment and smoothly connect the two
sets of centerlines based on the optimal combination. The final
connected centerlines represents the structure of the entire braided
part of the input hairstyle (Figure 7f).

Finally, we expand the connected centerlines using the same method
for the database described in Section 4, in order to obtain the surface
of the volumetric tubes for the braid (Figure 7g). To further improve
the fitness to the input hairstyle, we use the non-rigid ICP algorithm
to align the expanded surface with the captured geometry. The
deformed surface represents the reconstructed volumetric tubes for
the braided part of input hair (Figure 7h).

(a) without fuzziness (b) with fuzziness

Figure 8: Adding fuzziness [Choe and Ko 2005] over the final output
strands.

Discussion. An alternative way to obtain the structure of the
braided part is to connect these selected surface patches {Pf}
directly using a mesh composition approach [Huang et al. 2012]. We
found that connecting the centerlines first, followed by expanding
the surface with non-rigid ICP is easier to implement and produces
good results in all our cases.

7 Strand Synthesis

After extracting the braid structure of the input hair, we synthesize
full hair strands in both the braided and unbraided parts. The
unbraided part consists of the points C that are not covered by
the fitted braid patches in the braid obtained in the fitting step in
Section 5.

We first synthesize the strands on the unbraided part by growing
bidirectionally from the uncovered points based on the local
orientations as described in [Luo et al. 2013]. These synthesized
strands are then used to build a 3D orientation field using the method
of [Wang et al. 2009] and diffused into the entire output volume
as in [Paris et al. 2008]. During this diffusion process we consider
the centerline directions in the braided parts to ensure continuity
with the unbraided parts. Next, we determine the root positions by
randomly sampling a user-specified region on a manually prepared
scalp. Finally we grow the output strands from the roots following
the 3D orientation field. Once a strand grows into the braided part,
i.e. one of the volumetric tubes obtained in Section 6, we compute
the barycentric coordinates of the entry point with respect to the
cross section of the tube, and interpolate all subsequent growing
positions using the same barycentric coordinates along the tube.

To further improve the visual realism of the reconstruction results,
we introduce some fuzziness into the sample positions of the final
strands using the method of [Choe and Ko 2005] (See Figure 8).

8 Results

Capture setup. Our algorithm supports different capturing sys-
tems, and does not require precise control of the environments.
Except for the basic braid case in Figure 14 which is captured using
a multi-view stereo (as shown in Figure 9b), all other results are
obtained by slowly moving a hand-held Kinect camera around the
targets (as shown in Figure 9a) for realtime geometry reconstruction
using KinectFusion [Newcombe et al. 2011].

Hairstyles. To show the effectiveness of our method, we have
tested our framework with a variety of different braided hairstyles.
As illustrated in Figure 1 and 14, our method can successfully



(a) Hand-held Kinect (b) Multi-view stereo

Figure 9: Our capture setups.

input photo our result [Luo et al. 2013] [Hu et al. 2014]

Figure 10: Comparisons with state-of-the-art hair capture methods.

reconstruct complex braided hairstyles with different numbers
of strands per braid, different numbers of braids, different braid
geometry (varying width and thicknesses with global twist and
bending), and different topology (e.g., the merged style at the bottom
of Figure 14).

Comparisons. In Figure 10 we compare our method with two
state-of-the-art hair capture techniques [Luo et al. 2013; Hu et al.
2014], using the same input point cloud and orientation field. Luo
et al. [2013] connects hair threads via geometric heuristics. Such
heuristics often fail when there are significant occlusions in braids,
causing broken hair threads in the final reconstruction. Hu et
al. [2014] uses database of example strands from pre-simulation
and user sketches to produce better customized hair connections.
However, the strand groups can still yield incorrect topological
configuration due to potential ambiguity in the orientation fields, e.g.
at adjacent segments coming from different braids. In contrast, our
approach produces structurally correct strands for braided hairstyles
by leveraging our procedurally generated patches.

Evaluations. To evaluate the robustness of our algorithm (see
Figure 11), we reconstruct the same input hairstyle of a fishtail
braid (Figure 11a) using different example patches. Specifically, we
restrict the number and type of example patches within the database
and first check if our method produces smaller fitting errors for more
suitable patches. We also see if our technique generates plausible
results even with examples that are different from the captured input.
As demonstrated, our method can successfully distinguish between
different example patches based on the fitting errors. Moreover
plausible reconstructions can be obtained even without structurally
correct examples in the database. Figure 12 further demonstrates
the robustness of our method against the estimated scale of example
patches. Specifically, we uniformly scale the example patches in
Figure 4f by different factors s before running our patch fitting and
structure analysis algorithm. As shown in Figure 12, our method
produces good results with a wide range of estimated scales.

Implementation. The input hairstyles shown in this paper are
manually woven and styled, taking several minutes for an inexperi-
enced person per hairstyle. The most time-consuming stage in our
pipeline is the input pre-processing part. Computing a 3D orientation
field from a set of 2D images takes about 40 minutes, while manual
clean-up of the mesh takes about half an hour. The patch fitting
step requires five minutes of computation for one patch using 100

different initial poses (parallelized on four cores and eight threads).
In our implementation, all the numbers length related measurements
are in millimeters and all angles are in radians. We compute the
distance in Section 6 according Section 5, and set the threshold to
100 in all our results except 200 for Figure 11c and Figure 11d. The
grid size for an orientation field in Section 7 is set to 1mm, and
building a vector field takes about five minutes. The number of final
output strands ranges from 30K to 50K. All the other computations
can be done within seconds (on a 2.6 GHz Intel Core i7 and 16 GB
RAM machine).

9 Discussion and Limitations

We have introduced a data-driven framework to reconstruct large
varieties of complex braided hairstyles. Even with a consumer level
RGB-D camera (Kinect) as input, we can generate compelling results
on par with existing state-of-the-art multi-view stereo techniques.
Our method is robust against parameter selection and can produce
plausible reconstructions even when examples in the database are
completely different from the input braids.

As a data-driven approach, the effectiveness of our method and
the quality of our reconstruction results is determined by the input
data, including both capture accuracy as well as the prior braided
structures in the database. We cannot ensure that the recovered
structure fully complies with the input hairstyles, especially when
the captured data is noisy and incomplete. Furthermore, the tail
part of a braid often exhibits highly irregular deformations. We
have incorporated additional patch tapering heuristics to improve
the visual appearance of the results (see Figure 13 for a failure case).

Similar to prior methods on hair capture [Luo et al. 2013; Echevarria
et al. 2014], our method requires the user to manually segment
the hair parts from the captured geometry. Fully automatic hair
segmentation techniques based on data-driven and orientation
field analysis could significantly reduce the manual effort in the
reconstruction process.

Another limitation of our method is the need of specifying a rough
scale for the example patches in the database. Inappropriate scaling
factors could lead to inaccurate reconstructions since the example
patches can fail to fit the captured input geometry. One solution
is to enumerate more examples of different scales in the database,
but the computational cost can increase significantly. It would be
interesting to adopt an analysis method such as [Huang et al. 2014]
to automatically extract the scaling factors by detecting the repetitive
and near-regular structure in the braided hairstyles.

While a large range of braided hairstyles are covered by our approach,
there are still certain types that are difficult to handle. For instance,
a French rope braid has clusters of strands that twist around the
centerline, causing the local orientation of hair strands to no longer
follow the centerline of the cluster. Here, our database generation
can be extended with additional procedural rules. We leave the
construction of a universal hairstyle database as future work. Such a
database could be obtained through manually designed priors (e.g.
[Yuksel et al. 2009]) and parametric forms as proposed in this work.



(a) input (b) fishtail: E = 66.86 (c) 3-strand: E = 87.09
(d) 4-strand: E = 98.52 (e) fishtail & 3-strands: E = 68.36

Figure 11: Comparisons with different example patches. We fit a fishtail braid (a) using different example patches in our database (b) - (e); shown in each are
the example patch(es), the extracted structure, the output strands, and the fitting error E computed via Section 5.

reference
photo

s = 0.8,
E = 54.86

s = 1.0,
E = 55.98

s = 1.2,
E = 58.92

s = 1.3,
E = 62.80

Figure 12: Comparisons with different estimated scales for the example
patch in the database.

input photo with tapering without tapering

Figure 13: Failure case.
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A Appendix

A.1 Parametric Forms of Different Braids

The centerlines of a typical five-strand Dutch braid (Figure 5c) can
be described as:

L0 : x = a sin (t) , y = t, z = b sin (4t)

L1 : x = a sin (t+ 2⇡/5) , y = t, z = b sin (4 (t+ 2⇡/5))

L2 : x = a sin (t+ 4⇡/5) , y = t, z = b sin (4 (t+ 4⇡/5))

L3 : x = a sin (t+ 6⇡/5) , y = t, z = b sin (4 (t+ 6⇡/5))

L4 : x = a sin (t+ 8⇡/5) , y = t, z = b sin (4 (t+ 8⇡/5))

(6)

Replacing the factor 4 for z coordinate in Equation 6 above will
lead to a fishtail-like braid (Figure 5d). The centerlines of a typical
four-strand braid (Figure 5b) can be described as:

L0 : x = a sin (t) , y = t, z = b · f (t)

L1 : x = a sin (t+ ⇡/2) , y = t, z = b · f (t+ 1⇡/2)

L2 : x = a sin (t+ ⇡) , y = t, z = b · f (t+ ⇡)

L3 : x = a sin (t+ 3⇡/2) , y = t, z = b · f (t+ 3⇡/2)

(7)

where

f (t) =

(
sin(2t) if 2n⇡  t < 2n⇡ + ⇡, n 2 Z
sin(4t) otherwise

(8)

In general, the following term describes the centerlines {Li} of a
braid with odd number of clusters:

Li : x = a sin (t+ i⇡/n) , y = t, z = b sin (m (t+ i⇡/n))

(9)

where m is an even number smaller than n. The centerlines {Li} of
a braid with even number of clusters are slightly more complex and
can be described in a closed form as below:

Li : x = a sin (t+ i⇡/n) , y = t, z = b · f (t+ i⇡/n) (10)

where

f (t) =

⇢
sin((n� 2)t) if 2m⇡  t < 2m⇡ + ⇡,m 2 Z
sin(n · t) otherwise

(11)

In both Equation 9 and Equation 10, i = 0, 1, ..., n� 1, while n is
an odd number and an even number respectively. Please note that
the parametric forms above only cover a subset of possible braids
and there are many more possibilities in practice.


